Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 172928, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754497

RESUMO

Black carbon (BC) aerosols play a very significant role in influencing air quality, climate, and human health. Large uncertainties still exist in BC emissions due to limited observations on the relative source contributions of fossil fuel (ff) combustion and biomass (wood fuel, wf) burning. Our understanding of long-term changes in BC emissions, especially their source apportionment, is sparse and limited. For the first time, BC characteristics, its source apportionment into ff and wf components, and their trends measured using a multi-wavelength aethalometer over an urban location (Ahmedabad) in India covering a 14 year period (2006-2019) are comprehensively investigated. The average contributions of eBCff and eBCwf concentrations to total eBC are 80 % and 20 %, respectively, which highlights the dominance of emissions from fossil fuel combustion processes. A statistically significant increasing trend in eBC and eBCff mass concentrations at the rate of 11 % and 29%yr-1, respectively, and a decreasing trend in eBCwf concentration at the rate of 36%yr-1 are detected. The study reveals a significant decrease in biomass (wood fuel) burning emissions over the past decade and an increase in emissions from fossil fuel combustion. However, the rates of increase and decrease in eBCff and eBCwf are different, which indicate that rapid urbanization led to an increase in anthropogenic emissions, whereas an increase in usage of non-polluting fuel led to a decreasing trend in wood burning contribution. During weekdays and weekends, eBC and eBCff mass concentrations did not exhibit any statistically significant trends. However, eBCwf concentration shows a statistically significant decreasing trend during weekdays 34%yr-1 and weekends 38%yr-1. Globally, several countries are adopting various strategies and mitigation policies to improve air quality; however, significant gaps exist in their implementation towards achieving cleaner air and less polluted environment. This comprehensive study is relevant for understanding the impact of urbanization and devising better BC emission control policies.

2.
Atmos Res ; 267: 105924, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34803200

RESUMO

A nationwide lockdown was imposed in India due to the Coronavirus Disease 2019 (COVID-19) pandemic which significantly reduced the anthropogenic emissions. We examined the characteristics of equivalent black carbon (eBC) mass concentration and its source apportionment using a multiwavelength aethalometer over an urban site (Ahmedabad) in India during the pandemic induced lockdown period of year 2020. For the first time, we estimate the changes in BC, its contribution from fossil (eBC ff ) and wood (eBC wf ) fuels during lockdown (LD) and unlock (UL) periods in 2020 with respect to 2017 to 2019 (normal period). The eBC mass concentration continuously decreased throughout lockdown periods (LD1 to LD4) due to enforced and stringent restrictions which substantially reduced the anthropogenic emissions. The eBC mass concentration increased gradually during unlock phases (UL1 to UL7) due to the phase wise relaxations after lockdown. During lockdown period eBC mass concentration decreased by 35%, whereas during the unlock period eBC decreased by 30% as compared to normal period. The eBC wf concentrations were higher by 40% during lockdown period than normal period due to significant increase in the biomass burning emissions from the several community kitchens which were operational in the city during the lockdown period. The average contributions of eBC ff and eBC wf to total eBC mass concentrations were 70% and 30% respectively during lockdown (LD1 to LD4) period, whereas these values were 87% and 13% respectively during the normal period. The reductions in BC concentrations were commensurate with the reductions in emissions from transportation and industrial activities. The aerosol radiative forcing reduced significantly due to the reduction in anthropogenic emissions associated with COVID-19 pandemic induced lockdown leading to a cooling of the atmosphere. The findings in the present study on eBC obtained during the unprecedented COVID-19 induced lockdown can provide a comprehensive understanding of the BC sources and current emission control strategies, and thus can serve as baseline anthropogenic emissions scenario for future emission control strategies aimed to improve air quality and climate.

3.
Environ Sci Pollut Res Int ; 24(9): 8411-8424, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28188549

RESUMO

Aethalometer based source apportionment model using the measured aerosol absorption coefficients at different wavelengths is used to apportion the contribution of fossil fuel and wood burning sources to the total black carbon (BC) mass concentration. Temporal and seasonal variabilities in BC mass concentrations, equivalent BC from fossil fuel (BC f f ), and wood burning (BC w b ) are investigated over an urban location in western India during January 2014 to December 2015. BC, BC f f , and BC w b mass concentrations exhibit strong diurnal variation and are mainly influenced by atmospheric dynamics. BC f f was higher by a factor of 2-4 than BC w b and contributes maximum to BC mass throughout the day, confirming consistent anthropogenic activities. Diurnal contribution of BC f f and BC w b exhibits opposite variation due to differences in emission sources over Ahmedabad. Night time BC values are about a factor of 1.4 higher than day time BC values. The annual mean percentage contributions of day time and night time are 42 and 58 %, respectively. BC, BC f f , and BC w b mass concentrations exhibit large and significant variations during morning, afternoon, evening, and night time. During afternoon, mass concentration values are minimum throughout the year because of the fully evolved boundary layer and reduced anthropogenic activities. BC exhibits a strong seasonal variability with postmonsoon high (8.3 µg m -3) and monsoon low (1.9 µg m -3). Annual mean BC f f and BC w b contributions are 80 and 20 %, respectively, to total BC, which suggests that major contribution of BC in Ahmedabad comes from fossil fuel emissions. The results show that the study location is dominated by fossil fuel combustion as compared to the emissions from wood burning. The results obtained represent a regional value over an urban regime which can be used as inputs on source apportionment to model BC emissions in regional and global climate models.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Fuligem/análise , Aerossóis/química , Monitoramento Ambiental/métodos , Combustíveis Fósseis , Índia , Modelos Teóricos , Estações do Ano , Madeira/química
4.
Environ Sci Pollut Res Int ; 20(3): 1617-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22777610

RESUMO

This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 µg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.


Assuntos
Material Particulado/análise , Fuligem/análise , Tempo (Meteorologia) , Cidades , Índia , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...