Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Rep ; 14(1): 15387, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965339

RESUMO

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Assuntos
Biofilmes , Lactobacillus , Probióticos , Triptaminas , Escherichia coli Uropatogênica , Vagina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Triptaminas/farmacologia , Feminino , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/fisiologia , Probióticos/farmacologia , Vagina/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Adulto , Antibacterianos/farmacologia
2.
Med J Armed Forces India ; 77(4): 426-430, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34594071

RESUMO

BACKGROUND: The Indian Armed Forces are fighting the battle at extreme High Altitude, the most inhospitable terrain in the world, for the last thirty five years. The stress of being isolated under harsh environmental conditions on a daily basis can have an adverse effect on their mind. However, so far, no study has been undertaken to assess the psychological effects of deployment at extreme High Altitude. METHODS: Three hundred thirty-four troops selected for deployment were initially evaluated using the General Health Questionnaire-12 (GHQ-12) and Armed Forces Medical College Life Events Scale (AFMC LES) as screening tools to assess mental health status after obtaining ethical clearance and informed consent. On deinduction after a deployment for more than three months, they were reassessed. The data collected were statistically analysed. RESULTS: As per GHQ-12 evaluation, after the deployment score increased from 0.2574 to 0.9162, but remained lower than the 'caseness' level of 2. Among the 79 troops with a score of 2 and more, the majority were married and had past history of tenures at high-altitude areas. There was statistically significant increase in the AFMC LES scores also on deployment. CONCLUSION: Deployment at extremely high-altitude areas for even three months produces significant psychological morbidity among troops.

5.
Gene ; 723: 144126, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589963

RESUMO

Non-coding RNAs are known to participate in cancer initiation, progression, and metastasis by regulating the status of chromatin epigenetics and gene expression. Although these non-coding RNAs do not possess defined protein-coding potential, they are involved in the expression and stability of messenger RNA (mRNA). The length of microRNAs (miRs) ranges between 20 and 22 nt, whereas, long non-coding RNAs (lncRNAs) length ranges between 200 nt to 1 Kb. In the case of circular RNAs (circRNAs), the size varies depending upon the length of the exon from where they were derived. Epigenetic regulations of miR and lncRNA genes will influence the gene expression by modulating histone acetylation and methylation patterns. Especially, lncRNAs will act as a scaffold for various epigenetic proteins, such as EZH2 and LSD1, and influence the chromatin epigenetic state at various genomic loci involved at silencing. Thus investigations on the expression of lncRNAs and designing drugs to modulate the expression of these genes will have a profound impact on future therapeutics against cancers such as Glioblastoma Multiforme (GBM) and also against various other diseases. With the recent advancements in genome-wide transcriptomic studies, scientists are focused on the non-coding RNAs and their regulations on various cellular processes involved in GBM and on other types of cancer as well as trying to understand possible epigenetic modulations that help in generating promising therapeutics for the future generations. In this review, the involvement of epigenetic proteins, enzymes that change chromatin architecture and epigenetic landscape and new roles of lncRNAs that are involved in GBM progression are elaborately discussed.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , MicroRNAs/genética , RNA Longo não Codificante/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/genética , Ensaios Clínicos como Assunto , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Glioblastoma/genética , Humanos
6.
Biochim Biophys Acta Gen Subj ; 1863(7): 1196-1209, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028823

RESUMO

BACKGROUND: Epithelial to mesenchymal transition (EMT) and extracellular matrix (ECM) remodeling, are the two elemental processes promoting glioblastoma (GBM). In the present work we propose a mechanistic modelling of GBM and in process establish a hypothesis elucidating critical crosstalk between heat shock proteins (HSPs) and matrix metalloproteinases (MMPs) with synergistic upregulation of EMT-like process and ECM remodeling. METHODS: The interaction and the precise binding site between the HSP and MMP proteins was assayed computationally, in-vitro and in GBM clinical samples. RESULTS: A positive crosstalk of HSP27 with MMP-2 and MMP-9 was established in both GBM patient tissues and cell-lines. This association was found to be of prime significance for ECM remodeling and promotion of EMT-like characteristics. In-silico predictions revealed 3 plausible interaction sites of HSP27 interacting with MMP-2 and MMP-9. Site-directed mutagenesis followed by in-vitro immunoprecipitation assay (IP) with 3 mutated recombinant HSP27, confirmed an interface stretch containing residues 29-40 of HSP27 to be a common interaction site for both MMP-2 and MMP-9. This was further validated with in-vitro IP of truncated (sans AA 29-40) recombinant HSP27 with MMP-2 and MMP-9. CONCLUSION: The association of HSP27 with MMP-2 and MMP-9 proteins along with the identified interacting stretch has the potential to contribute towards drug development to inhibit GBM infiltration and migration. GENERAL SIGNIFICANCE: Current findings provide a novel therapeutic target for GBM opening a new horizon in the field of GBM management.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Proteínas de Choque Térmico HSP27/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos
7.
Biochem Pharmacol ; 164: 1-16, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885764

RESUMO

Glioblastoma (GBM) is the most malignant form of brain tumor posing a major threat to cancer amelioration. Temozolomide (TMZ) resistance is one of the major hurdles towards GBM prognosis. Oxidative stress and ECM remodeling are the two important processes involved in gaining chemo-resistance. Here, we established NFE2L2, an important member of oxidative stress regulation elevated in resistant cells, to be playing a transcriptional regulatory role on MMP-2, an ECM remodeling marker. This link led us to further explore targeted molecules to inhibit NFE2L2, thus affecting MMP-2, an important member promoting chemo-resistance. Thus, diosgenin was proposed as a novel NFE2L2 inhibitor acting as an alternative strategy to prevent the high dose administration of TMZ. Combinatorial therapy of diosgenin and TMZ significantly reduced the dosage regimen of TMZ and also showed affectivity in hitherto TMZ resistant GBM cells. GBM cells underwent apoptosis and early cell cycle arrest with significant reduction in MMP-2 levels. Thus preclinical validation of molecular interaction between diosgenin and NFE2L2 down-regulating MMP-2, EMT markers and promoting apoptosis, offers rationale for new therapeutic horizons in the field of glioblastoma management.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Temozolomida/administração & dosagem , Animais , Sequência de Bases , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Metaloproteinase 2 da Matriz/genética , Camundongos Nus , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Estrutura Terciária de Proteína , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cancer Lett ; 452: 254-263, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30904616

RESUMO

Epithelial to mesenchymal transition (EMT) is compulsory for metastatic dissemination and is stimulated by TGF-ß. Although targeting EMT has significant therapeutic potential, very few pharmacological agents have been shown to exert anti-metastatic effects. BI-69A11, a competitive Akt inhibitor, displays anti-tumor activity toward melanoma and colon carcinoma. This study provides molecular and biochemical insights into the effects of BI-69A11 on EMT in colon carcinoma cells in vitro and in vivo. BI-69A11 inhibited metastasis-associated cellular migration, invasion and adhesion by inhibiting the Akt-ß-catenin pathway. The underlying mechanism of BI-69A11-mediated inhibition of EMT included suppression of nuclear transport of ß-catenin and diminished phosphorylation of ß-catenin, which was accompanied by enhanced E-cadherin-ß-catenin complex formation at the plasma membrane. Additionally, BI-69A11 caused increased accumulation of vinculin in the plasma membrane, which fortified focal adhesion junctions leading to inhibition of metastasis. BI-69A11 downregulated activation of the TGF-ß-induced non-canonical Akt/NF-κB pathway and blocked TGF-ß-induced enhanced expression of Snail causing restoration of E-cadherin. Overall, this study enhances our understanding of the molecular mechanism of BI-69A11-induced reversal of EMT in colorectal carcinoma cells in vitro, in vivo and in TGF-ß-induced model systems.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Caderinas/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Quinolonas/farmacologia , beta Catenina/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Vinculina/metabolismo
9.
Chem Commun (Camb) ; 54(57): 7940-7943, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29955739

RESUMO

A new strategy for the detection of hypoxia and NO succeeded by photocontrolled delivery of an anticancer agent has been demonstrated. The developed system is able to produce distinct responses (dual channel) upon interaction with hypoxia and NO. This probe can also release anticancer drugs upon photoirradiation acting potentially as both a dual-analyte imaging agent and a prodrug.

10.
J Mater Chem B ; 6(38): 6042-6046, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254814

RESUMO

Nitric oxide photodonor (NOD) conjugated perylene tetracarboxylate ester (TPT) based fluorescent organic TPT(NOD)4 nanoparticles (NPs) with aggregation induced NIR emission have shown photoinduced nitric oxide delivery along with a red to green emission transition. Time dependent imaging and dose dependent cytotoxicity studies of these NPs using U87MG cells demonstrate the self monitoring and real time reporting abilities and potential anticancer activity of the system, respectively.

11.
J Colloid Interface Sci ; 507: 1-10, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28779647

RESUMO

Cholesterol (Chol) is a ubiquitous steroidal component of cell membrane and is known to modulate the packing of phospholipids within the bilayer. Thus, Chol has been frequently used in the formulation and study of artificial "model membranes" like vesicles and liposomes. In this work, we have developed a novel anionic surfactant by conjugating two biomolecules, cholesterol and γ-aminobutyric acid via a urethane linkage. We have studied its physicochemical behavior in aqueous buffer. The surfactant has been shown to spontaneously form small unilamellar vesicles above a very low critical concentration in aqueous neutral buffer at room temperature. The vesicle phase was characterized by use of fluorescence probe, transmission electron microscopy and dynamic light scattering (DLS) techniques. The vesicle bilayer was found to be much less polar as well as more viscous compared to the bulk water. The vesicle stability with respect to change of temperature, pH, and ageing time was investigated by fluorescence probe and DLS techniques. The loading efficiency of the vesicles for the hydrophobic drug, curcumin, was determined and its release under physiological condition was studied. The in vitro cellular uptake of curcumin-loaded vesicles to human breast cancer cell line (MDA-MB-231) also was investigated. The MTT assay showed that the surfactant was non-cytotoxic up to a relatively high concentration.


Assuntos
Antineoplásicos Fitogênicos/química , Colesterol/química , Curcumina/química , Tensoativos/química , Ácido gama-Aminobutírico/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Portadores de Fármacos , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz/métodos , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Camundongos , Micelas , Células NIH 3T3 , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
12.
Chem Commun (Camb) ; 53(68): 9470-9473, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28795702

RESUMO

We report a new strategy, viz. cascade photocaging, for protecting diethylamine diazeniumdiolate (O2-position), a light sensitive molecule. Upon photolysis, the cascade photocage at first releases the light activatable linker (latent fluorophore) O2-caged diazeniumdiolate, which undergoes spontaneous 1,8-elimination, triggering the release of the diazeniumdiolate anion and the fluorophore.

13.
Exp Cell Res ; 359(2): 299-311, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28844885

RESUMO

Glial tumor is one of the intrinsic brain tumors with high migratory and infiltrative potential. This essentially contributes to the overall poor prognosis by circumvention of conventional treatment regimen in glioma. The underlying mechanism in gliomagenesis is bestowed by two processes- Extracellular matrix (ECM) Remodeling and Epithelial to mesenchymal transition (EMT). Heat Shock Family of proteins (HSPs), commonly known as "molecular chaperons" are documented to be upregulated in glioma. A positive correlation also exists between elevated expression of HSPs and invasive capacity of glial tumor. HSPs overexpression leads to mutational changes in glioma, which ultimately drive cells towards EMT, ECM modification, malignancy and invasion. Differential expression of HSPs - a factor providing cytoprotection to glioma cells, also contributes towards its radioresistance /chemoresistance. Various evidences also display upregulation of EMT and ECM markers by various heat shock inducing proteins e.g. HSF-1. The aim of this review is to study in detail the role of HSPs in EMT and ECM leading to radioresistance/chemoresistance of glioma cells. The existing treatment regimen for glioma could be enhanced by targeting HSPs through immunotherapy, miRNA and exosome mediated strategies. This could be envisaged by better understanding of molecular mechanisms underlying glial tumorigenesis in relation to EMT and ECM remodeling under HSPs influence. Our review might showcase fresh potential for the development of next generation therapeutics for effective glioma management.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Proteínas de Choque Térmico/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/terapia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Matriz Extracelular/efeitos da radiação , Raios gama/uso terapêutico , Glioma/patologia , Glioma/cirurgia , Glioma/terapia , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas/uso terapêutico , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Invasividade Neoplásica , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
14.
Cell Signal ; 35: 24-36, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28347875

RESUMO

Tumor angiogenesis and invasion are deregulated biological processes that drive multistage transformation of tumors from a benign to a life-threatening malignant state activating multiple signaling pathways including MD-2/TLR4/NF-κB. Development of potential inhibitors of this signaling is emerging area for discovery of novel cancer therapeutics. In the current investigation, we identified Iturin A (A lipopeptide molecule from Bacillus megaterium) as a potent inhibitor of angiogenesis and cancer invasion by various in vitro and in vivo methods. Iturin A was found to suppress VEGF, a powerful inducer of angiogenesis and key player in tumor invasion, as confirmed by ELISA, western blot and real time PCR. Iturin A inhibited endothelial tube arrangement, blood capillary formation, endothelial sprouting and vascular growth inside the matrigel. In addition, Iturin A inhibited MMP-2/9 expression in MDA-MB-231 and HUVEC cells. Cancer invasion, migration and colony forming ability were significantly hampered by Iturin A. Expressions of MD-2/TLR4 and its downstream MyD88, IKK-α and NF-κB were also reduced in treated MDA-MB-231 and HUVEC cells. Western blot and immunofluorescence study showed that nuclear accumulation of NF-κB was hampered by Iturin A. MD-2 siRNA or plasmid further confirmed the efficacy of Iturin A by suppressing MD-2/TLR4 signaling pathway. The in silico docking study showed that the Iturin A interacted well with the MD-2 in MD-2/TLR4 receptor complex. Conclusively, inhibition of MD-2/TLR4 complex with Iturin A offered strategic advancement in cancer therapy.


Assuntos
Antígeno 96 de Linfócito/genética , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos/administração & dosagem , Receptor 4 Toll-Like/genética , Bacillus megaterium/química , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Quinase I-kappa B/genética , Antígeno 96 de Linfócito/química , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/genética , Invasividade Neoplásica/genética , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Peptídeos Cíclicos/química , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/química
15.
Acta Pharmacol Sin ; 38(5): 591-613, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28317871

RESUMO

Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.


Assuntos
Neoplasias Encefálicas/terapia , Encéfalo/patologia , Glioma/terapia , Terapia de Alvo Molecular/tendências , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Glioma/genética , Glioma/patologia , Humanos , Terapia de Alvo Molecular/métodos
16.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3039-3052, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27721046

RESUMO

BACKGROUND: Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. METHODS: Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm2). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. RESULTS: In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. CONCLUSION: Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. GENERAL SIGNIFICANCE: Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ouro/química , Hipertermia Induzida , Micelas , Nanotubos/química , Neoplasias/terapia , Fototerapia , Polímeros/química , Animais , Materiais Biocompatíveis/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Contraste/química , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Isoindóis/farmacologia , Camundongos , Nanotubos/ultraestrutura , Polímeros/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Sulfonamidas/farmacologia , Raios X
17.
J Org Chem ; 81(22): 11168-11175, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27754672

RESUMO

A new fluorescent photoremovable protecting group (FPRPG) based on acetylcarbazole framework has been explored for the first time release of single and dual (similar or different) substrates from single chromophore. Mechanistic studies of the photorelease process revealed that photorelease of two (similar or different) substrates from acetyl carbazole proceeds via a stepwise pathway. Further, we constructed photoresponsive dual drug delivery system (DDS) to release two different anticancer drugs (caffeic acid and chlorambucil, 1 equiv each). In vitro study reveals that our DDS exhibit excellent properties like biocompatibility, cellular uptake, and photoregulated dual drug release.


Assuntos
Aminoácidos/química , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carbazóis/química , Ácidos Carboxílicos/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética/métodos , Fotoquímica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
18.
Chem Asian J ; 11(24): 3482-3486, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27706928

RESUMO

The design, synthesis, and in vitro biological studies of a biotin-carbazole-dicyanovinyl-chlorambucil conjugate (Bio-CBZ-DCV-CBL; 6) are reported. This conjugate (6) is a multifunctional single-molecule appliance composed of a thiol-sensor DCV functionality, a CBZ-derived phototrigger as well as fluorescent reporter, and CBL as the anticancer drug, and Bio as the cancer-targeting ligand. In conjugate 6, the DCV bond undergoes a thiol-ene click reaction at pH<7 with intracellular thiols, thereby shutting down internal charge transfer between the donor CBZ and acceptor DCV units, resulting in a change of the fluorescence color from green to blue, and thereby, sensing the tumor microenvironment. Subsequent photoirradiation results in release of the anticancer drug CBL in a controlled manner.


Assuntos
Antineoplásicos/química , Biotina/química , Carbazóis/química , Clorambucila/química , Portadores de Fármacos/química , Animais , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/toxicidade , Células HeLa , Humanos , Luz , Camundongos , Microscopia Confocal , Células NIH 3T3 , Fotólise/efeitos da radiação , Espectrofotometria Ultravioleta
19.
Cancer Gene Ther ; 23(11): 382-391, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27767088

RESUMO

Oral cancer consists of squamous cell carcinoma within the oral cavity or on the lip. The clinical prognosis of this cancer is mostly poor owing to delayed diagnosis and a lack of appropriate early detection biomarkers to identify the disease. In the current study, we investigated the role of the S100A7 calcium-binding protein in oral squamous cell carcinoma as an activator of the p38/MAPK and RAB2A signaling pathway. The aim of the present study was to determine whether S100A7 and RAB2A have a role in tumor progression and to assess their potential as early detection biomarkers for oral cancer. This study elucidated the functional and molecular mechanisms of S100A7 and RAB2A activity in oral cancer, leading us to conclude that S100A7 is the major contributing factor in the occurrence of oral cancer and promotes local tumor progression by activating the MAPK signaling pathway via the RAB2A pathway. We hypothesize that S100A7 affects cell motility and invasion by regulating the RAB2A-associated MAPK signaling cascades. Also, the downregulation of S100A7 expression by RNA interference-mediated silencing inhibits oral cancer cell growth, migration and invasion.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Bucais/metabolismo , Proteína A7 Ligante de Cálcio S100/fisiologia , Proteína rab2 de Ligação ao GTP/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Carcinogênese , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ativação Enzimática , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica , Interferência de RNA , Proteína rab2 de Ligação ao GTP/genética
20.
Tumour Biol ; 37(5): 6389-402, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26631035

RESUMO

Amplification of PI3K-Akt pathway promotes radioresistance in various cancers including colorectal carcinoma. Local recurrence in colon cancer causes poor prognosis affecting overall survival of cancer-affected patient population. To avoid local recurrence, pre-operative or post-operative additional radiotherapy is given. However, main concern regarding radiotherapy is to increase the radiosensitivity of malignant cell without hampering the activities of normal cells. In this context, addition of two or more than two chemotherapeutic drugs as a radiosensitizer is a common practice in radiation biology. BI-69A11 earlier showed potential apoptosis-inducing effect in melanoma and colon carcinoma. Celecoxib showed anti-cancer effects in both COX-2 dependent and independent pathways and used to act as a radiosensitizing enhancer. Here, we suggest that the combination of BI-69A11 and celecoxib inhibits the phosphorylation of ataxia telangiectasia mutated (ATM) kinase and DNA-PK responsible for ionizing radiation (IR)-induced double-strand break (DSB) repair. Moreover, the combinatorial effect of BI-69A11 and celecoxib attenuates the IR-induced G2/M cell cycle arrest. Furthermore, this combination also impairs IR-induced activation of Akt and downstream targets of ATM. This might lead to induced activation of apoptotic pathway after triple therapy treatment modulating pro-apoptotic and anti-apoptotic proteins. This activation of apoptotic pathway also showed the interdependence of PUMA and BAD in triple combination-treated colon cancer cells in a p53 independent manner. This study reveals the therapeutic potential of the triple combination therapy in prevention of radioresistance. Besides, it also demonstrates the cytotoxic effects of triple combination therapy in colon cancer. This study shows utility and potential implication on safety of the patients undergoing radiation therapy.


Assuntos
Carcinoma/tratamento farmacológico , Carcinoma/radioterapia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Benzimidazóis/administração & dosagem , Carcinoma/patologia , Celecoxib/administração & dosagem , Neoplasias do Colo/patologia , Terapia Combinada , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Células HCT116 , Humanos , Quinolonas/administração & dosagem , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Radiossensibilizantes/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...