Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10682-10690, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787450

RESUMO

The sol-gel reaction mechanism of 211 MAX phases has proven to be very complex when identifying the intermediate species, chemical processes, and conversions that occur from a mixture of metal salts and gelling agent into a crystalline ternary carbide. With mostly qualitative results in the literature (Cr2GaC, Cr2GeC, and V2GeC), additional analytical techniques, including thermal analysis, powder diffraction, total scattering, and various spectroscopic methods, are necessary to unravel the identity of the chemical compounds and transformations during the reaction. Here, we demonstrate the combination of these techniques to understand the details of the sol-gel synthesis of MAX phase V2PC. The metal phosphate complexes, as well as amorphous/nanocrystalline vanadium phosphate species (V in different oxidation states), are identified at all stages of the reaction and a full schematic of the reaction process is suggested. The early amorphous vanadium species undergo multiple changes of oxidation states while organic species decompose releasing a variety of small molecule gases. Amorphous oxides, analogous to [NH4][VO2][HPO4], V2PO4O, and VO2P2O7 are identified in the dried gel obtained during the early stages of the heating process (300 and 600 °C), respectively. They are carbothermally reduced starting at 900 °C and subsequently react to crystalline V2PC with the excess carbon in the reaction mixture. Through CHN analysis, we obtain an estimate of left-over amorphous carbon in the product which will guide future efforts of minimizing the amount of carbon in sol gel-produced MAX phases which is important for subsequent property studies.

2.
JACS Au ; 3(12): 3283-3289, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38155641

RESUMO

Titanium dioxide is the most studied photocatalytic material and has been reported to be active for a wide range of reactions, including the oxidation of hydrocarbons and the reduction of nitrogen. However, the molecular-scale interactions between the titania photocatalyst and dinitrogen are still debated, particularly in the presence of hydrocarbons. Here, we used several spectroscopic and computational techniques to identify interactions among nitrogen, methanol, and titania under illumination. Electron paramagnetic resonance spectroscopy (EPR) allowed us to observe the formation of carbon radicals upon exposure to ultraviolet radiation. These carbon radicals are observed to transform into diazo- and nitrogen-centered radicals (e.g., CHxN2• and CHxNHy•) during photoreaction in nitrogen environment. In situ infrared (IR) spectroscopy under the same conditions revealed C-N stretching on titania. Furthermore, density functional theory (DFT) calculations revealed that nitrogen adsorption and the thermodynamic barrier to photocatalytic nitrogen fixation are significantly more favorable in the presence of hydroxymethyl or surface carbon. These results provide compelling evidence that carbon radicals formed from the photooxidation of hydrocarbons interact with dinitrogen and suggest that the role of carbon-based "hole scavengers" and the inertness of nitrogen atmospheres should be reevaluated in the field of photocatalysis.

3.
Inorg Chem ; 62(32): 12721-12729, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37506323

RESUMO

Variable temperature electron paramagnetic resonance (VT-EPR) was used to investigate the role of the environment and oxidation states of several coordinated Eu compounds. We find that while Eu(III) chelating complexes are diamagnetic, simple chemical reduction results in the formation of paramagnetic species. In agreement with the distorted D3h symmetry of Eu molecular complexes investigated in this study, the EPR spectrum of reduced complexes showed axially symmetric signals (g⊥ = 2.001 and g∥ = 1.994) that were successfully simulated with two Eu isotopes with nuclear spin 5/2 (151Eu and 153Eu with 48% and 52% natural abundance, respectively) and nuclear g-factors 151Eu/153Eu = 2.27. Illumination of water-soluble complex Eu(dipic)3 at 4 K led to the ligand-to-metal charge transfer (LMCT) that resulted in the formation of Eu(II) in a rhombic environment (gx = 2.006, gy = 1.995, gz = 1.988). The existence of LMCT affects the luminescence of Eu(dipic)3, and pre-reduction of the complex to Eu(II)(dipic)3 reversibly reduces red luminescence with the appearance of a weak CT blue luminescence. Furthermore, encapsulation of a large portion of the dipic ligand with Cucurbit[7]uril, a pumpkin-shaped macrocycle, inhibited ligand-to-metal charge transfer, preventing the formation of Eu(II) upon illumination.

4.
Nat Commun ; 14(1): 848, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792597

RESUMO

Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.

5.
J Am Chem Soc ; 145(1): 689-696, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574726

RESUMO

Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by n-doping naphthalene diimide subunits with varying amounts of CoCp2 and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy. Low spin densities (e.g., 6.0 × 1012 spins mm-3) enable lengthy spin-lattice (T1) and spin-spin relaxation (T2) times across a range of temperatures, ranging from T1 values of 164 ms at 10 K to 30.2 µs at 296 K and T2 values of 2.36 µs at 10 K to 0.49 µs at 296 K for the lowest spin density sample examined. Higher spin densities and temperatures were both found to diminish T1 times, which we attribute to detrimental cross-relaxation from spin-spin dipolar interactions and spin-phonon coupling, respectively. Higher spin densities decreased T2 times and modulated the T2 temperature dependence. We attribute these differences to the competition between hyperfine and dipolar interactions for electron spin decoherence, with the dominant interaction transitioning from the former to the latter as spin density and temperature increase. Overall, this investigation demonstrates that dispersing electronic spin qubits within layered 2DPs enables chemical control of their inter-qubit interactions and spin decoherence times.

6.
J Am Chem Soc ; 144(41): 19008-19016, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36201712

RESUMO

Recent advancements in quantum sensing have sparked transformative detection technologies with high sensitivity, precision, and spatial resolution. Owing to their atomic-level tunability, molecular qubits and ensembles thereof are promising candidates for sensing chemical analytes. Here, we show quantum sensing of lithium ions in solution at room temperature with an ensemble of organic radicals integrated in a microporous metal-organic framework (MOF). The organic radicals exhibit electron spin coherence and microwave addressability at room temperature, thus behaving as qubits. The high surface area of the MOF promotes accessibility of the guest analytes to the organic qubits, enabling unambiguous identification of lithium ions and quantitative measurement of their concentration through relaxometric and hyperfine spectroscopic methods based on electron paramagnetic resonance (EPR) spectroscopy. The sensing principle presented in this work is applicable to other metal ions with nonzero nuclear spin.

7.
Front Chem ; 10: 962161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186597

RESUMO

Bioinspired photocatalysis has resulted in efficient solutions for many areas of science and technology spanning from solar cells to medicine. Here we show a new bioinspired semiconductor nanocomposite (nanoTiO2-DOPA-luciferase, TiDoL) capable of converting light energy within cancerous tissues into chemical species that are highly disruptive to cell metabolism and lead to cell death. This localized activity of semiconductor nanocomposites is triggered by cancer-generated activators. Adenosine triphosphate (ATP) is produced in excess in cancer tissues only and activates nearby immobilized TiDoL composites, thereby eliminating its off-target toxicity. The interaction of TiDoL with cancerous cells was probed in situ and in real-time to establish a detailed mechanism of nanoparticle activation, triggering of the apoptotic signaling cascade, and finally, cancer cell death. Activation of TiDoL with non-cancerous cells did not result in cell toxicity. Exploring the activation of antibody-targeted semiconductor conjugates using ATP is a step toward a universal approach to single-cell-targeted medical therapies with more precision, efficacy, and potentially fewer side effects.

8.
Adv Mater ; 34(22): e2101932, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34850459

RESUMO

2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp2 ). Optical and transient microwave spectroscopy reveal that both as-prepared NDI-containing 2DPs are semiconducting with sub-2 eV optical bandgaps and photoexcited charge-carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2 , both 2DPs largely retain their periodic structures and exhibit optical and electron-spin resonance spectroscopic features consistent with the presence of NDI-radical anions. While the native NDI-based 2DPs are electronically insulating, maximum bulk conductivities of >10-4  S cm-1 are achieved by substoichiometric levels of n-doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out-of-plane (π-stacking) crystallographic directions, which indicates that cross-plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well-defined, paramagnetic, 2DP n-type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

9.
ACS Nano ; 14(11): 14989-14998, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33073574

RESUMO

We show that the self-assembly of monodisperse CdSe nanocrystals synthesized at lower temperature (∼310 °C) into three-dimensional supercrystals results in the formation of separate regions within the supercrystals that display photoluminescence at two distinctly different wavelengths. Specifically, the central portions of the supercrystals display photoluminescence and absorption in the orange region of the spectrum, around 585 nm, compared to the 575 nm photoluminescence maximum for the nanocrystals dispersed in toluene. Distinct domains on the surfaces and edges of the supercrystals, by contrast, display photoluminescence and absorption in the green region of the spectrum, around 570 nm. We attribute the different-colored domains to two subpopulations of NCs in the monodisperse ensemble: the nanocrystals in the "orange" regions are chemically stable, whereas the nanocrystals in the "green" regions are partially oxidized. The susceptibility of the "green" nanocrystals to oxidation indicates a lower coverage of capping molecules on these nanocrystals. We propose that the two subpopulations correspond to nanocrystals with different surfaces that we attribute to the polytypism of CdSe.

10.
Angew Chem Int Ed Engl ; 59(36): 15734-15740, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32468699

RESUMO

Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.

11.
Phys Rev Lett ; 124(5): 056002, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083924

RESUMO

Oxygen reactivity plays a key role in the performance of ceria-based catalysts. Aberration-corrected transmission electron microscopy and molecular dynamics simulations were used to study the oxygen atom diffusion in ceria under activated conditions. Reactive oxygen atom and its real-time diffusion were visualized. The interplay between cerium and oxygen atoms originating from a Coulomb interaction was revealed by the out-of-plane buckling of cerium atoms associated with oxygen transport. Anisotropic oxygen atom diffusion that depends on crystal orientations was discovered, demonstrating a preferential [001] crystallographic diffusion pathway. These findings reveal prospects for applications of anisotropic orientation-relevant fluorite-structured oxides.

12.
J Am Chem Soc ; 141(30): 11811-11815, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31305995

RESUMO

The engineering of biological pathways with man-made materials provides inspiring blueprints for sustainable fuel production. Here, we leverage a top-down cellular engineering strategy to develop a new semi-artificial photosynthetic paradigm for carbon dioxide reduction via enveloping Halobacterium purple membrane-derived vesicles over Pd-deposited hollow porous TiO2 nanoparticles. In this biohybrid, the membrane protein, bacteriorhodopsin, not only retains its native biological function of pumping protons but also acts as a photosensitizer that injects light-excited electrons into the conduction band of TiO2. As such, the electrons trapped on Pd cocatalysts and the protons accumulated inside the cytomimetic architecture act in concert to reduce CO2 via proton-coupled multielectron transfer processes. This study provides an alternative toolkit for developing robust semi-artificial photosynthetic systems for solar energy conversion.

13.
Nanoscale ; 11(22): 10756-10762, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31120466

RESUMO

Employing electrons for direct control of a nanoscale reaction is highly desirable since it enables fabrication of nanostructures with different properties at atomic resolution and with flexibility of dimensions and location. Here, applying in situ transmission electron microscopy, we show the reversible oxidation and reduction kinetics in Ag, well controlled by changing the dose rate of the electron beam. Aberration-corrected high-resolution transmission electron microscopy observation reveals that O atoms are preferably inserted and extracted along the {111} close-packed planes of Ag, leading to the nucleation and decomposition of nanoscale Ag2O islands on the Ag substrate. By controlling the electron beam size and dose rate, we demonstrated the fabrication of an array of 3 nm Ag2O nanodots in an Ag matrix. Our results open a new pathway to manipulate an atomistic reaction with an electron beam towards the precise fabrication of nanostructures for device applications.

14.
Angew Chem Int Ed Engl ; 58(15): 4896-4900, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30701643

RESUMO

Herein, we present a light-gated protocell model made of plasmonic colloidal capsules (CCs) assembled with bacteriorhodopsin for converting solar energy into electrochemical gradients to drive the synthesis of energy-storage molecules. This synthetic protocell incorporated an important intrinsic property of noble metal colloidal particles, namely, plasmonic resonance. In particular, the near-field coupling between adjacent metal nanoparticles gave rise to strongly localized electric fields and resulted in a broad absorption in the whole visible spectra, which in turn promoted the flux of photons to bacteriorhodopsin and accelerated the proton pumping kinetics. The cell-like potential of this design was further demonstrated by leveraging the outward pumped protons as "chemical signals" for triggering ATP biosynthesis in a coexistent synthetic protocell population. Hereby, we lay the ground work for the engineering of colloidal supraparticle-based synthetic protocells with higher-order functionalities.


Assuntos
Trifosfato de Adenosina/síntese química , Células Artificiais/química , Luz , Fótons , Ressonância de Plasmônio de Superfície , Trifosfato de Adenosina/química , Bacteriorodopsinas/química , Engenharia Celular , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
15.
Nano Lett ; 17(3): 2094-2101, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28191964

RESUMO

GaAs is one of the most important semiconductors. However, colloidal GaAs nanocrystals remain largely unexplored because of the difficulties with their synthesis. Traditional synthetic routes either fail to produce pure GaAs phase or result in materials whose optical properties are very different from the behavior expected for quantum dots of direct-gap semiconductors. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS, transient absorption, and EPR spectroscopies, we conclude that unusual optical properties of colloidal GaAs NCs can be related to the presence of Ga vacancies and lattice disorder. These defects do not manifest themselves in TEM images and powder X-ray diffraction patterns but are responsible for the lack of absorption features even in apparently crystalline GaAs nanoparticles. We introduce a novel molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.

16.
J Phys Chem A ; 120(15): 2307-12, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27050805

RESUMO

The mechanism of nitrite reduction by excess electrons on TiO2 nanoparticles (eTiO2(-)) was studied under anaerobic conditions. TiO2 was loaded with up to 75 electrons per particle, induced by γ-irradiation of acidic TiO2 colloid solutions containing 2-propanol. Time-resolved kinetics and material analysis were performed, mostly at 1.66 g L(-1) TiO2. At relatively low nitrite concentrations (R = [eTiO2(-)]o/[nitrite]o > 1.5), eTiO2(-) decays via two consecutive processes; at higher concentrations, only one decay step is observed. The stoichiometric ratio Δ[eTiO2(-)]/[nitrite]o of the faster process is about 2. This process involves the one-electron reduction of nitrite, forming the nitrite radical (k1 = (2.0 ± 0.2) × 10(6) M(-1) s(-1)), which further reacts with eTiO2(-) (k2) in competition with its dehydration to nitric oxide (NO) (k3). The ratios k2/k3 = (3.0 ± 0.5) × 10(3) M(-1) and k2 > 1 × 10(6) M(-1) s(-1) were derived from kinetic simulations and product analysis. The major product of this process is NO. The slower stage of the kinetics involves the reduction of NO by eTiO2(-), and the detailed mechanism of this process has been discussed in our earlier publication. The results reported in this study suggest that several intermediates, including NO and NH2OH, are adsorbed on the titanium nanoparticles and give rise to inverse dependency of the respective reaction rates on the TiO2 concentration. It is demonstrated that the reduction of nitrite by eTiO2(-) yields mainly N2O and NH3 via consecutive one-electron transfer reactions.

17.
ACS Nano ; 10(3): 3738-46, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26937679

RESUMO

Operando characterization of gas-solid reactions at the atomic scale is of great importance for determining the mechanism of catalysis. This is especially true in the study of heterostructures because of structural correlation between the different parts. However, such experiments are challenging and have rarely been accomplished. In this work, atomic scale redox dynamics of Ag/AgCl heterostructures have been studied using in situ environmental transmission electron microscopy (ETEM) in combination with density function theory (DFT) calculations. The reduction of Ag/AgCl to Ag is likely a result of the formation of Cl vacancies while Ag(+) ions accept electrons. The oxidation process of Ag/AgCl has been observed: rather than direct replacement of Cl by O, the Ag/AgCl nanocatalyst was first reduced to Ag, and then Ag was oxidized to different phases of silver oxide under different O2 partial pressures. Ag2O formed at low O2 partial pressure, whereas AgO formed at atmospheric pressure. By combining in situ ETEM observation and DFT calculations, this structural evolution is characterized in a distinct nanoscale environment.

18.
ACS Nano ; 9(8): 8194-205, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26169073

RESUMO

Nanostructured bilayered V2O5 was electrochemically deposited within a carbon nanofoam conductive support. As-prepared electrochemically synthesized bilayered V2O5 incorporates structural water and hydroxyl groups, which effectively stabilizes the interlayers and provides coordinative preference to the Mg(2+) cation in reversible cycling. This open-framework electrode shows reversible intercalation/deintercalation of Mg(2+) ions in common electrolytes such as acetonitrile. Using a scanning transmission electron microscope we demonstrate that Mg(2+) ions can be effectively intercalated into the interlayer spacing of nanostructured V2O5, enabling electrochemical magnesiation against a Mg anode with a specific capacity of 240 mAh/g. We employ HRTEM and X-ray fluorescence (XRF) imaging to understand the role of environment in the intercalation processes. A rebuilt full cell was tested by employing a high-energy ball-milled Sn alloy anode in acetonitrile with Mg(ClO4)2 salt. XRF microscopy reveals effective insertion of Mg ions throughout the V2O5 structure during discharge and removal of Mg ions during electrode charging, in agreement with the electrode capacity. We show using XANES and XRF microscopy that reversible Mg intercalation is limited by the anode capacity.

19.
J Phys Chem A ; 119(12): 2760-9, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25730520

RESUMO

The reaction mechanism of nitric oxide (NO) reduction by excess electrons on TiO2 nanoparticles (e(TiO2)(-)) has been studied under anaerobic conditions. TiO2 was loaded with 10-130 electrons per particle using γ-irradiation of acidic TiO2 colloid solutions containing 2-propanol. The study is based on time-resolved kinetics and reactants and products analysis. The reduction of NO by e(TiO2)(-) is interpreted in terms of competition between a reaction path leading to formation of NH3 and a path leading to N2O and N2. The proposed mechanism involves consecutive one-electron transfers of NO, and its reduction intermediates HNO, NH2O(•), and NH2OH. The results show that e(TiO2)(-) does not reduce N2O and N2. Second-order rate constants of e(TiO2)(-) reactions with NO (740 ± 30 M(-1) s(-1)) and NH2OH (270 ± 30 M(-1) s(-1)) have been determined employing the rapid-mixing stopped-flow technique and that with HNO (>1.3 × 10(6) M(-1) s(-1)) was derived from fitting the kinetic traces to the suggested reaction mechanism, which is discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...