Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7214, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532007

RESUMO

This research commences a unit statistical model named power new power function distribution, exhibiting a thorough analysis of its complementary properties. We investigate the advantages of the new model, and some fundamental distributional properties are derived. The study aims to improve insight and application by presenting quantitative and qualitative perceptions. To estimate the three unknown parameters of the model, we carefully examine various methods: the maximum likelihood, least squares, weighted least squares, Anderson-Darling, and Cramér-von Mises. Through a Monte Carlo simulation experiment, we quantitatively evaluate the effectiveness of these estimation methods, extending a robust evaluation framework. A unique part of this research lies in developing a novel regressive analysis based on the proposed distribution. The application of this analysis reveals new viewpoints and improves the benefit of the model in practical situations. As the emphasis of the study is primarily on practical applications, the viability of the proposed model is assessed through the analysis of real datasets sourced from diverse fields.

2.
Int J Data Sci Anal ; : 1-21, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36465699

RESUMO

Creating new distributions with more desired and flexible qualities for modeling lifetime data has resulted in a concentrated effort to modify or generalize existing distributions. In this paper, we propose a new distribution called the power exponentiated Lindley (PEL) distribution by generalizing the Lindley distribution using the power exponentiated family of distributions, that can fit lifetime data. Then the main statistical properties such as survival function, hazard function, reverse hazard function, moments, quantile function, stochastic ordering, MRL, order statistics, etc., of the newly proposed distribution have been derived. The parameters of the distribution are estimated using the MLE method. Then, a Monte Carlo simulation study is used to check the consistency of the parameters of the PEL distribution in terms of MSE, RMSE, and bias. Finally, we implement the PEL distribution as a statistical lifetime model for the COVID-19 case fatality ratio (in %) in China and India, and the new cases of COVID-19 reported in Delhi. Then we check whether the new distribution fits the data sets better than existing well-known distributions. Different statistical measures such as the value of the log-likelihood function, K-S statistic, AIC, BIC, HQIC, and p-value are used to assess the accuracy of the model. The suggested model seems to be superior to its base model and other well-known and related models when applied to the COVID-19 data set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...