Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 20(1): 5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195647

RESUMO

BACKGROUND: The measurement of root dielectric response is a useful non-destructive method to evaluate root growth and function. Previous studies tracked root development throughout the plant growing cycle by single-time electrical measurements taken repeatedly. However, it is known that root conductivity and uptake activity can change rapidly, coupled with the day/night cycles of photosynthetic and transpiration rate. Therefore, the low-frequency dielectric monitoring of intact root-substrate systems at minute-scale temporal resolution was tested using a customized impedance measurement system in a laboratory environment. Electrical capacitance (CR) and conductance (GR) and the dissipation factor (DR) were detected for 144 h in potted maize, cucumber and pea grown under various light/dark and temperature conditions, or subjected to progressive leaf excision or decapitation. Photosynthetic parameters and stomatal conductance were also measured to evaluate the stress response. RESULTS: The CR and GR data series showed significant 24-h seasonality associated with the light/dark and temperature cycles applied. This was attributed to the diurnal patterns in whole-plant transpiration (detected via stomatal conductance), which is strongly linked to the root water uptake rate. CR and GR decreased during the 6-day dark treatment, and dropped proportionally with increasing defoliation levels, likely due to the loss of canopy transpiration caused by dark-induced senescence or removal of leaves. DR showed a decreasing trend for plants exposed to 6-day darkness, whereas it was increased markedly by decapitation, indicating altered root membrane structure and permeability, and a modified ratio of apoplastic to cell-to-cell water and current pathways. CONCLUSIONS: Dynamic, in situ impedance measurement of the intact root system was an efficient way of following integrated root water uptake, including diurnal cycles, and stress-induced changes. It was also demonstrated that the dielectric response mainly originated from root tissue polarization and current conduction, and was influenced by the actual physiological activity of the root system. Dielectric measurement on fine timescale, as a diagnostic tool for monitoring root physiological status and environmental response, deserves future attention.

2.
Front Plant Sci ; 9: 93, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449861

RESUMO

The root electrical capacitance (C R ) method is suitable for assessing root growth and activity, but soil water content (SWC) strongly influences the measurement results. This study aimed to adapt the method for field monitoring by evaluating the effect of SWC on root capacitance to ensure the comparability of C R detected at different SWC. First a pot experiment was conducted with maize and soybean to establish C R -SWC functions for the field soil. Ontogenetic changes in root activity were monitored under field conditions by simultaneously measuring C R and SWC around the roots. The C R values were normalized using SWC data and experimental C R -SWC functions to obtain C R*, the comparable indicator of root activity. The effect of arbuscular mycorrhizal fungi (AMF) inoculation on the C R* and biomass of field-grown soybean was investigated. The pot trial showed an exponential increase in C R with SWC. C R -SWC functions proved to be species-specific. C R showed strong correlation with root dry mass (R2 = 0.83-0.87). The root activity (C R*) of field-grown crops increased until flowering, then decreased during maturity. This was consistent with data obtained with other methods. AMF inoculation of soybean resulted in significantly higher C R* during the late vegetative and early flowering stages, when destructive sampling concurrently showed higher shoot biomass. The results demonstrated that the root capacitance method could be useful for time course studies on root activity under field conditions, and for comparing single-time capacitance data collected in areas with heterogeneous soil water status.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...