Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(27): 71226-71251, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165264

RESUMO

The graphene oxide (GO) deposited TiO2 nanotube (GO/TiO2) electrode on a titania plate was prepared using a simple anodization method. The morphological and structural properties of TiO2 and GO/TiO2 electrodes have been studied using field emission scanning electron microscopy energy dispersive spectroscopy (FESEM-EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Raman spectroscopy, Fourier transform infrared spectra (FT-IR), and X-ray photoelectron spectroscopy (XPS). FESEM-EDS analysis confirmed that the 13.56% wt of GO nanoparticles was formed over the TiO2 substrate, with the thickness of the wall to be ∼300 nm. The crystallite size of GO/TiO2, i.e., 19.53 nm, was confirmed by XRD analysis. Analysis of the UV-DRS spectrum showed the bandgap of the synthesized GO/TIO2 nanotube electrode to be 3.052 eV. Box-Behnken design (BBD) under response surface methodology (RSM) was used to design the experiments. The effect of operating input parameters like pH, current (i), and degradation time (t) on % COD degradation (X1) and energy consumed (X2) were also examined. At optimum process parameters, the value of X1 and X2 were 57.61% and 15.00 kWh/m3, respectively. Possible intermediates were identified based on the GC-MS data analysis. Scavenger tests showed that •OH radical plays a major role in electroplating effluents degradation. Based on the results, the EO process using GO/TiO2 electrodes could be considered a promising technique for electroplating effluent degradation due to high degradation efficiency.


Assuntos
Nanotubos , Águas Residuárias , Espectroscopia de Infravermelho com Transformada de Fourier , Galvanoplastia , Titânio/química , Nanotubos/química , Eletrodos
2.
Environ Sci Pollut Res Int ; 29(48): 72196-72246, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35084684

RESUMO

Water pollution by recalcitrant compounds is an increasingly important problem due to the continuous introduction of new chemicals into the environment. Choosing appropriate measures and developing successful strategies for eliminating hazardous wastewater contaminants from industrial processes is currently a primary goal. Electroplating industry wastewater involves highly toxic cyanide (CN), heavy metal ions, oils and greases, organic solvents, and the complicated composition of effluents and may also contain biological oxygen demand (BOD), chemical oxygen demand (COD), SS, DS, TS, and turbidity. The availability of these metal ions in electroplating industry wastewater makes the water so toxic and corrosive. Because these heavy metals are harmful to living things, they must be removed to prevent them from being absorbed by plants, animals, and humans. As a result, exposure to electroplating wastewater can induce necrosis and nephritis in humans and lung cancer, digestive system cancer, anemia, hepatitis, and maxillary sinus cancer with prolonged exposure. For the safe discharge of electroplating industry effluents, appropriate wastewater treatment has to be provided. This article examines and assesses new approaches such as coagulation and flocculation, chemical precipitation, ion exchange, membrane filtration, adsorption, electrochemical treatment, and advanced oxidation process (AOP) for treating the electroplating industry wastewater. On the other hand, these physicochemical approaches have significant drawbacks, including a high initial investment and operating cost due to costly chemical reagents, the production of metal complexes sludge that needs additional treatment, and a long recovery process. At the same time, advanced techniques such as electrochemical treatment can remove various kinds of organic and inorganic contaminants such as BOD, COD, and heavy metals. The electrochemical treatment process has several advantages over traditional technologies, including complete removal of persistent organic pollutants, environmental friendliness, ease of integration with other conventional technologies, less sludge production, high separation, and shorter residence time. The effectiveness of the electrochemical treatment process depends on various parameters, including pH, electrode material, operation time, electrode gap, and current density. This review mainly emphasizes the removal of heavy metals and another pollutant such as CN from electroplating discharge. This paper will be helpful in the selection of efficient techniques for treatment based on the quantity and characteristics of the effluent produced.


Assuntos
Cáusticos , Complexos de Coordenação , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Animais , Cianetos/química , Galvanoplastia/métodos , Humanos , Metais Pesados/análise , Óleos , Poluentes Orgânicos Persistentes , Esgotos , Solventes , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...