Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956835

RESUMO

To realize the commercialization of sustainable materials, new polymers must be generated and systematically evaluated for material characteristics and end-of-life treatment. Polyester polyols made from renewable monomers have found limited adoption in thermoplastic polyurethane (TPU) applications, and their broad adoption in manufacturing may be possible with a more detailed understanding of their structure and properties. To this end, we prepared a series of bio-based crystalline and amorphous polyester polyols utilizing azelaic acid and varying branched or non-branched diols. The prepared polyols showed viscosities in the range of 504-781 cP at 70 °C, with resulting TPUs that displayed excellent thermal and mechanical properties. TPUs prepared from crystalline azelate polyester polyol exhibited excellent mechanical properties compared to TPUs prepared from amorphous polyols. These were used to demonstrate prototype products, such as watch bands and cup-shaped forms. Importantly, the prepared TPUs had up to 85% bio-carbon content. Studies such as these will be important for the development of renewable materials that display mechanical properties suitable for commercially viable, sustainable products.


Assuntos
Ácidos Dicarboxílicos , Poliuretanos , Álcoois , Poliésteres , Poliuretanos/química
2.
ACS Omega ; 7(18): 15350-15358, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571824

RESUMO

Flow chemistry offers a solution for replacing batch methods in chemical preparation where intermediates or products may pose toxicity or instability hazards. Ozonolysis offers an ideal opportunity for flow chemistry solutions, but multiple barriers to entry exist for use of these methods, including equipment cost and performance optimization. To address these challenges, we developed a programmable DIY syringe pump system to use for a continuous flow multireactor process using 3D-printed parts, off-the-shelf stepper motors, and an Arduino microcontroller. Reaction kinetics of ozonide formation informed the use of an integrated batch-flow approach, where ozone addition to an olefin was timed to coincide with fluid movement of a single-syringe pump, followed by downstream Pinnick oxidation and reductive quench in flow. The system was demonstrated by continuous preparation of azelaic acid from ozonolysis of palmitoleic acid, a process limited to low production volumes via batch chemistry. High total production of azelaic acid with 80% yield was obtained from an algae oil sourced unsaturated fatty acid: a product with important applications in medicine, cosmetics, and polymers. This low-cost, scalable approach offers the potential for rapid prototyping and distributed chemical production.

3.
Biomacromolecules ; 22(5): 1770-1794, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33822601

RESUMO

Due to the depletion of fossil fuels, higher oil prices, and greenhouse gas emissions, the scientific community has been conducting an ongoing search for viable renewable alternatives to petroleum-based products, with the anticipation of increased adaptation in the coming years. New academic and industrial developments have encouraged the utilization of renewable resources for the development of ecofriendly and sustainable materials, and here, we focus on those advances that impact polyurethane (PU) materials. Vegetable oils, algae oils, and polysaccharides are included among the major renewable resources that have supported the development of sustainable PU precursors to date. Renewable feedstocks such as algae have the benefit of requiring only sunshine, carbon dioxide, and trace minerals to generate a sustainable biomass source, offering an improved carbon footprint to lessen environmental impacts. Incorporation of renewable content into commercially viable polymer materials, particularly PUs, has increasing and realistic potential. Biobased polyols can currently be purchased, and the potential to expand into new monomers offers exciting possibilities for new product development. This Review highlights the latest developments in PU chemistry from renewable raw materials, as well as the various biological precursors being employed in the synthesis of thermoset and thermoplastic PUs. We also provide an overview of literature reports that focus on biobased polyols and isocyanates, the two major precursors to PUs.


Assuntos
Isocianatos , Poliuretanos , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...