Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1315555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385010

RESUMO

The cultivation of meat using in vitro grown animal stem cells offers a promising solution to pressing global concerns around climate change, ethical considerations, and public health. However, cultivated meat introduces an unprecedented necessity: the generation of mass scales of cellular biomaterial, achieved by fostering cell proliferation within bioreactors. Existing methods for in vitro cell proliferation encounter substantial challenges in terms of both scalability and economic viability. Within this perspective, we discuss the current landscape of cell proliferation optimization, focusing on approaches pertinent to cellular agriculture. We examine the mechanisms governing proliferation rates, while also addressing intrinsic and conditional rate limitations. Furthermore, we expound upon prospective strategies that could lead to a significant enhancement of the overall scalability and cost-efficiency of the cell proliferation phase within the cultivated meat production process. By exploring knowledge from basic cell cycle studies, pathological contexts and tissue engineering, we may identify innovative solutions toward optimizing cell expansion.

2.
Trends Biotechnol ; 42(3): 269-281, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37805297

RESUMO

Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.


Assuntos
Carne , Probióticos , Animais , Carne in vitro , Bactérias , Mamíferos
3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34642250

RESUMO

The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.


Assuntos
Ativação Linfocitária , RNA de Transferência/metabolismo , Linfócitos T/imunologia , Proliferação de Células/genética , Códon , Mutação da Fase de Leitura , Humanos , Processamento Pós-Transcricional do RNA , Linfócitos T/citologia
4.
Elife ; 92020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33357381

RESUMO

Different subsets of the tRNA pool in human cells are expressed in different cellular conditions. The 'proliferation-tRNAs' are induced upon normal and cancerous cell division, while the 'differentiation-tRNAs' are active in non-dividing, differentiated cells. Here we examine the essentiality of the various tRNAs upon cellular growth and arrest. We established a CRISPR-based editing procedure with sgRNAs that each target a tRNA family. We measured tRNA essentiality for cellular growth and found that most proliferation-tRNAs are essential compared to differentiation- tRNAs in rapidly growing cell lines. Yet in more slowly dividing lines, the differentiation-tRNAs were more essential. In addition, we measured the essentiality of each tRNA family upon response to cell cycle arresting signals. Here we detected a more complex behavior with both proliferation-tRNAs and differentiation tRNAs showing various levels of essentiality. These results provide the so-far most comprehensive functional characterization of human tRNAs with intricate roles in various cellular states.


Assuntos
Pontos de Checagem do Ciclo Celular , Proliferação de Células , RNA de Transferência/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Clonagem Molecular , Edição de Genes , Biblioteca Genômica , Células HeLa , Humanos , RNA de Transferência/genética
5.
Mol Cell ; 75(3): 427-441.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31353208

RESUMO

The translation machinery and the genes it decodes co-evolved to achieve production throughput and accuracy. Nonetheless, translation errors are frequent, and they affect physiology and protein evolution. Mapping translation errors in proteomes and understanding their causes is hindered by lack of a proteome-wide experimental methodology. We present the first methodology for systematic detection and quantification of errors in entire proteomes. Following proteome mass spectrometry, we identify, in E. coli and yeast, peptides whose mass indicates specific amino acid substitutions. Most substitutions result from codon-anticodon mispairing. Errors occur at sites that evolve rapidly and that minimally affect energetic stability, indicating selection for high translation fidelity. Ribosome density data show that errors occur at sites where ribosome velocity is higher, demonstrating a trade-off between speed and accuracy. Treating bacteria with an aminoglycoside antibiotic or deprivation of specific amino acids resulted in particular patterns of errors. These results reveal a mechanistic and evolutionary basis for translation fidelity.


Assuntos
Substituição de Aminoácidos/genética , Biossíntese de Proteínas , Proteoma/genética , Seleção Genética , Aminoácidos/genética , Anticódon/genética , Códon/genética , Escherichia coli/genética , RNA de Transferência/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética
6.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925180

RESUMO

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Assuntos
Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
7.
Annu Rev Cell Dev Biol ; 34: 239-264, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30125138

RESUMO

The pool of transfer RNA (tRNA) molecules in cells allows the ribosome to decode genetic information. This repertoire of molecular decoders is positioned in the crossroad of the genome, the transcriptome, and the proteome. Omics and systems biology now allow scientists to explore the entire repertoire of tRNAs of many organisms, revealing basic exciting biology. The tRNA gene set of hundreds of species is now characterized, in addition to the tRNA genes of organelles and viruses. Genes encoding tRNAs for certain anticodon types appear in dozens of copies in a genome, while others are universally absent from any genome. Transcriptome measurement of tRNAs is challenging, but in recent years new technologies have allowed researchers to determine the dynamic expression patterns of tRNAs. These advances reveal that availability of ready-to-translate tRNA molecules is highly controlled by several transcriptional and posttranscriptional regulatory processes. This regulation shapes the proteome according to the cellular state. The tRNA pool profoundly impacts many aspects of cellular and organismal life, including protein expression level, translation accuracy, adequacy of folding, and even mRNA stability. As a result, the shape of the tRNA pool affects organismal health and may participate in causing conditions such as cancer and neurological conditions.


Assuntos
Genoma/genética , Biossíntese de Proteínas , Proteômica/tendências , RNA de Transferência/genética , Anticódon/genética , Códon/genética , Genômica/tendências , Humanos , Transcriptoma/genética
8.
PLoS Genet ; 12(8): e1006264, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27560950

RESUMO

Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal's lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene's promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species.


Assuntos
Caenorhabditis elegans/genética , Íntrons/genética , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Códon/genética , Regulação da Expressão Gênica , Genoma , Longevidade/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas/genética , RNA de Transferência/biossíntese
10.
Oncoscience ; 1(1): 39-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593987

RESUMO

LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy.

11.
Oncotarget ; 3(6): 629-39, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22776759

RESUMO

Neurofibromin regulates cell motility via three distinct GTPase pathways acting through two different domains, the Ras GTPase-activating protein-related domain (GRD) and the pre-GRD domain. First, the GRD domain inhibits Ras-dependent changes in cell motility through the mitogen activated protein cascade. Second, it also regulates Rho-dependent (Ras-independent) changes by activating LIM kinase 2 (LIMK2), an enzyme that phosphorylates and inactivates cofilin (an actin-depolymerizing factor). Third, the pre-GRD domain acts through the Rac1 GTPase, that activate the P21 activated kinase 1 (PAK1)-LIMK1-cofilin pathway. We employed molecular modeling to identify a novel inhibitor of LIMK1/2. The active sites of an ephrin-A receptor (EphA3) and LIMK2 showed marked similarity (60%). On testing a known inhibitor of EphA3, we found that it fits to the LIMK1/2-ATP binding site and to the latter's substrate-binding pockets. We identified a similar compound, T56-LIMKi, and found that it inhibits LIMK1/2 kinase activities. It blocked the phosphorylation of cofilin which led to actin severance and inhibition of tumor cell migration, tumor cell growth, and anchorage-independent colony formation in soft agar. Because modulation of LIMK by neurofibromin is not affected by the Ras inhibitor Salirasib, we examined the combined effect of Salirasib and T56-LIMKi each of which can affect cell motility by a distinct pathway. We found that their combined action on cell proliferation and stress-fiber formation in neurofibromin-deficient cells was synergistic. We suggest that this drug combination may be developed for treatment of neurofibromatosis and cancer.


Assuntos
Citoesqueleto de Actina/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Farneseno Álcool/análogos & derivados , Isoxazóis/farmacologia , Quinases Lim/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Salicilatos/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzamidas/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Farneseno Álcool/administração & dosagem , Farneseno Álcool/farmacologia , Humanos , Isoxazóis/administração & dosagem , Camundongos , Camundongos Knockout , Neurofibromina 1/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Salicilatos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...