Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(12): 5605-5619, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950687

RESUMO

Hydrogels of cellulose nanofibrils (CNFs) are promising wound dressing candidates due to their biocompatibility, high water absorption, and transparency. Herein, two different commercially available wood species, softwood and hardwood, were subjected to TEMPO-mediated oxidation to proceed with delignification and oxidation in a one-pot process, and thereafter, nanofibrils were isolated using a high-pressure microfluidizer. Furthermore, transparent nanofibril hydrogel networks were prepared by vacuum filtration. Nanofibril properties and network performance correlated with oxidation were investigated and compared with commercially available TEMPO-oxidized pulp nanofibrils and their networks. Softwood nanofibril hydrogel networks exhibited the best mechanical properties, and in vitro toxicological risk assessment showed no detrimental effect for any of the studied hydrogels on human fibroblast or keratinocyte cells. This study demonstrates a straightforward processing route for direct oxidation of different wood species to obtain nanofibril hydrogels for potential use as wound dressings, with softwood having the most potential.


Assuntos
Celulose , Hidrogéis , Humanos , Bandagens , Oxirredução , Fibroblastos
2.
Biomacromolecules ; 24(5): 2264-2277, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097826

RESUMO

The self-assembly of nanocellulose in the form of cellulose nanofibers (CNFs) can be accomplished via hydrogen-bonding assistance into completely bio-based hydrogels. This study aimed to use the intrinsic properties of CNFs, such as their ability to form strong networks and high absorption capacity and exploit them in the sustainable development of effective wound dressing materials. First, TEMPO-oxidized CNFs were separated directly from wood (W-CNFs) and compared with CNFs separated from wood pulp (P-CNFs). Second, two approaches were evaluated for hydrogel self-assembly from W-CNFs, where water was removed from the suspensions via evaporation through suspension casting (SC) or vacuum-assisted filtration (VF). Third, the W-CNF-VF hydrogel was compared to commercial bacterial cellulose (BC). The study demonstrates that the self-assembly via VF of nanocellulose hydrogels from wood was the most promising material as wound dressing and displayed comparable properties to that of BC and strength to that of soft tissue.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Hidrogéis , Bactérias , Bandagens
3.
Mater Today Bio ; 19: 100574, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36852226

RESUMO

The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

4.
Nucleic Acids Res ; 50(3): 1280-1296, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048973

RESUMO

A prominent aspect of most, if not all, central nervous systems (CNSs) is that anterior regions (brain) are larger than posterior ones (spinal cord). Studies in Drosophila and mouse have revealed that Polycomb Repressor Complex 2 (PRC2), a protein complex responsible for applying key repressive histone modifications, acts by several mechanisms to promote anterior CNS expansion. However, it is unclear what the full spectrum of PRC2 action is during embryonic CNS development and how PRC2 intersects with the epigenetic landscape. We removed PRC2 function from the developing mouse CNS, by mutating the key gene Eed, and generated spatio-temporal transcriptomic data. To decode the role of PRC2, we developed a method that incorporates standard statistical analyses with probabilistic deep learning to integrate the transcriptomic response to PRC2 inactivation with epigenetic data. This multi-variate analysis corroborates the central involvement of PRC2 in anterior CNS expansion, and also identifies several unanticipated cohorts of genes, such as proliferation and immune response genes. Furthermore, the analysis reveals specific profiles of regulation via PRC2 upon these gene cohorts. These findings uncover a differential logic for the role of PRC2 upon functionally distinct gene cohorts that drive CNS anterior expansion. To support the analysis of emerging multi-modal datasets, we provide a novel bioinformatics package that integrates transcriptomic and epigenetic datasets to identify regulatory underpinnings of heterogeneous biological processes.


Assuntos
Sistema Nervoso Central/embriologia , Complexo Repressor Polycomb 2 , Animais , Embrião de Mamíferos/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
5.
Exp Dermatol ; 31(5): 764-774, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34921689

RESUMO

Cutaneous wounds can lead to huge suffering for patients. Early fetal wounds have the capacity to regenerate without scar formation. Amniotic fluid (AF), containing hyaluronic acid (HA), may contribute to this regenerative environment. We aimed to analyse changes in gene expression when human keratinocytes are exposed to AF or HA. Human keratinocytes were cultured to subconfluence, starved for 12 h and then randomised to be maintained in (1) Dulbecco's modified Eagle's medium (DMEM), (2) DMEM with 50% AF, or (3) DMEM with 50% fetal calf serum (FCS). Transcriptional changes were analysed using microarray and enriched with WebGestalt and Enrichr. Additionally, eight diagnostic genes were analysed using semiquantitative real-time PCR to investigate epidermal differentiation and cellular stress after HA exposure as an alternative for AF exposure. The AF and FCS treatments resulted in enrichment of genes relating to varied aspects of epidermal and keratinocyte biology. In particular, p63-, AP1- and NFE2L2- (Nrf2) associated genes were found significantly regulated in both treatments. More genes regulated by FCS treatment were associated with inflammatory signalling, whilst AF treatment was dominantly associated with molecular establishment of epidermis and lipid metabolic activity. HA exposure mostly resulted in gene regulation that was congruent with the AF microarray group, with increased expression of ITGA6 and LOR. We conclude that AF exposure enhances keratinocyte differentiation in vitro, which suggests that AF constituents can be beneficial for wound-healing applications.


Assuntos
Líquido Amniótico , Queratinócitos , Células Cultivadas , Expressão Gênica , Humanos , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Cicatrização/genética
6.
Biomacromolecules ; 22(8): 3202-3215, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254779

RESUMO

In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing.


Assuntos
Nanofibras , Zingiber officinale , Antibacterianos/farmacologia , Bandagens , Humanos , Hidrogéis
7.
ACS Appl Bio Mater ; 3(9): 6510-6520, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021782

RESUMO

This study aims to utilize the natural composition of brown seaweed by deriving alginate and cellulose concurrently from the stipe (stem-like) and blade (leaf-like) structures of the seaweed; further, this is followed by fibrillation for the direct and resource-efficient preparation of alginate/cellulose nanofiber (CNF) hybrid inks for three-dimensional (3D) printing of hydrogels. The efficiency of the fibrillation process was evaluated, and the obtained gels were further studied with regard to their rheological behavior. As a proof of concept, the inks were 3D printed into discs, followed by cross-linking with CaCl2 to form biomimetic hydrogels. It was shown that the nanofibrillation process from both seaweed structures is very energy-efficient, with an energy demand lower than 1.5 kW h/kg, and with CNF dimensions below 15 nm. The inks displayed excellent shear-thinning behavior and cytocompatibility and were successfully printed into 3D discs that, after cross-linking, exhibited an interconnected network structure with favorable mechanical properties, and a cell viability of 71%. The designed 3D biomimetic hydrogels offers an environmentally benign, cost-efficient, and biocompatible material platform with a favorable structure for the development of biomedical devices, such as 3D bio printing of soft tissues.

8.
Development ; 145(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29530878

RESUMO

A conserved feature of the central nervous system (CNS) is the prominent expansion of anterior regions (brain) compared with posterior (nerve cord). The cellular and regulatory processes driving anterior CNS expansion are not well understood in any bilaterian species. Here, we address this expansion in Drosophila and mouse. We find that, compared with the nerve cord, the brain displays extended progenitor proliferation, more elaborate daughter cell proliferation and more rapid cell cycle speed in both Drosophila and mouse. These features contribute to anterior CNS expansion in both species. With respect to genetic control, enhanced brain proliferation is severely reduced by ectopic Hox gene expression, by either Hox misexpression or by loss of Polycomb group (PcG) function. Strikingly, in PcG mutants, early CNS proliferation appears to be unaffected, whereas subsequent brain proliferation is severely reduced. Hence, a conserved PcG-Hox program promotes the anterior expansion of the CNS. The profound differences in proliferation and in the underlying genetic mechanisms between brain and nerve cord lend support to the emerging concept of separate evolutionary origins of these two CNS regions.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Genes Homeobox/genética , Proteínas do Grupo Polycomb/metabolismo , Animais , Divisão Celular Assimétrica/genética , Ciclo Celular/genética , Proliferação de Células/genética , Sistema Nervoso Central/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos , Neurogênese/genética , Proteínas do Grupo Polycomb/genética
9.
PLoS One ; 10(6): e0128093, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061630

RESUMO

The possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers. Thickness of the neoepidermis was measured digitally, using immunohistochemical staining of keratins as epithelial demarcation. Air-lifting of wounds enhanced stratification in control wounds as well as wounds with CultiSpher-S. Immunohistochemical staining revealed expression of keratin 5, keratin 10, and laminin 5 in the neoepidermal component. We conclude that the CultiSpher-S microcarriers can function as tissue guiding scaffold for re-epithelialization of cutaneous wounds.


Assuntos
Gelatina/administração & dosagem , Reepitelização/fisiologia , Pele/citologia , Ferimentos e Lesões/terapia , Moléculas de Adesão Celular/biossíntese , Transplante de Células/métodos , Humanos , Imuno-Histoquímica , Queratina-10/biossíntese , Queratina-5/biossíntese , Queratinócitos/citologia , Pele/metabolismo , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Cicatrização/fisiologia , Ferimentos e Lesões/metabolismo , Calinina
10.
Burns ; 41(5): 1035-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25466959

RESUMO

Scarring is an extensive problem in burn care, and treatment can be especially complicated in cases of hypertrophic scarring. Contraction is an important factor in scarring but the contribution of different cell types remains unclear. We have investigated the contractile behavior of keratinocytes, melanocytes and fibroblasts by using an in vitro collagen gel assay aimed at identifying a modulating role of melanocytes in keratinocyte-mediated contraction. Cells were seeded on a collagen type I gel substrate and the change in gel dimensions were measured over time. Hematoxylin & Eosin-staining and immunohistochemistry against pan-cytokeratin and microphthalmia-associated transcription factor showed that melanocytes integrated between keratinocytes and remained there throughout the experiments. Keratinocyte- and fibroblast-seeded gels contracted significantly over time, whereas melanocyte-seeded gels did not. Co-culture assays showed that melanocytes mitigate the keratinocyte-dependent contraction (significantly slower and 18-32% less). Fibroblasts augmented the contraction in most assays (approximately 6% more). Non-contact co-cultures showed some influence on the keratinocyte-dependent contraction. Results show that mechanisms attributable to melanocytes, but not fibroblasts, can mitigate keratinocyte contractile behavior. Contact-dependent mechanisms are stronger modulators than non-contact dependent mechanisms, but both modes carry significance to the contraction modulation of keratinocytes. Further investigations are required to determine the mechanisms involved and to determine the utility of melanocytes beyond hypopigmentation in improved clinical regimes of burn wounds and wound healing.


Assuntos
Cicatriz/patologia , Colágeno Tipo I , Fibroblastos/citologia , Queratinócitos/citologia , Melanócitos/citologia , Técnicas de Cocultura , Feminino , Géis , Humanos , Técnicas In Vitro
11.
Differentiation ; 85(3): 67-77, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23644553

RESUMO

The ultimate goal of vascular tissue engineering is the production of functional grafts for clinical use. Difficulties acquiring autologous endothelial cells have motivated the search for alternative cell sources. Differentiation of dermal fibroblasts towards several mesenchymal lineages as well as endothelial cells has been proposed. The aim of the present study was to investigate the endothelial differentiation capacity of human dermal fibroblasts on a gene expression, protein expression and functional physiological level. Endothelial differentiation of fibroblasts was induced by culturing cells in 30% human serum, but not in fetal calf serum. Expression of proteins and genes relevant for endothelial function and differentiation was increased after induction. Furthermore, fibroblasts exposed to 30% human serum displayed increased uptake of low-density lipoprotein and formation of capillary-like networks. The results of this study may have an impact on cell sourcing for vascular tissue engineering, and the development of methods for vascularization of autologous tissue engineered constructs.


Assuntos
Diferenciação Celular , Derme/citologia , Células Endoteliais/citologia , Fibroblastos/citologia , Linhagem da Célula , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Soro , Engenharia Tecidual
12.
Differentiation ; 84(4): 305-13, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023066

RESUMO

Autologous cell-based therapies promise important developments for reconstructive surgery. In vitro expansion as well as differentiation strategies could provide a substantial benefit to cellular therapies. Human dermal fibroblasts, considered ubiquitous connective tissue cells, can be coaxed towards different cellular fates, are readily available and may altogether be a suitable cell source for tissue engineering strategies. Global gene expression analysis was performed to investigate the changes of the fibroblast phenotype after four-week inductions toward adipocytic, osteoblastic and chondrocytic lineages. Differential gene regulation, interpreted through Gene Set Enrichment Analysis, highlight important similarities and differences of induced fibroblasts compared to control cultures of human fibroblasts, adipocytes, osteoblasts and articular chondrocytes. Fibroblasts show an inherent degree of phenotype plasticity that can be controlled to obtain cells supportive of multiple tissue types.


Assuntos
Adipogenia , Condrogênese , Derme/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Osteogênese , Adipócitos/citologia , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Derme/citologia , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Osteoblastos/citologia , Fenótipo , Procedimentos de Cirurgia Plástica , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...