Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005482

RESUMO

The brake system requires careful attention for continuous monitoring as a vital module. This study specifically focuses on monitoring the hydraulic brake system using vibration signals through experimentation. Vibration signals from the brake pad assembly of commercial vehicles were captured under both good and defective conditions. Relevant histograms and wavelet features were extracted from these signals. The selected features were then categorized using Nested dichotomy family classifiers. The accuracy of all the algorithms during categorization was evaluated. Among the algorithms tested, the class-balanced nested dichotomy algorithm with a wavelet filter achieved a maximum accuracy of 99.45%. This indicates a highly effective method for accurately categorizing the brake system based on vibration signals. By implementing such a monitoring system, the reliability of the hydraulic brake system can be ensured, which is crucial for the safe and efficient operation of commercial vehicles in the market.

2.
Sensors (Basel) ; 23(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420597

RESUMO

Exact observing and forecasting tool conditions fundamentally affect cutting execution, bringing further developed workpiece machining accuracy and lower machining costs. Because of the unpredictability and time-differing nature of the cutting system, existing methodologies cannot achieve ideal oversight progressively. A technique dependent on Digital Twins (DT) is proposed to accomplish extraordinary accuracy in checking and anticipating tool conditions. This technique builds up a balanced virtual instrument framework that matches entirely with the physical system. Collecting data from the physical system (Milling Machine) is initialized, and sensory data collection is carried out. The National Instruments data acquisition system captures vibration data through a uni-axial accelerometer, and a USB-based microphone sensor acquires the sound signals. The data are trained with different Machine Learning (ML) classification-based algorithms. The prediction accuracy is calculated with the help of a confusion matrix with the highest accuracy of 91% through a Probabilistic Neural Network (PNN). This result has been mapped by extracting the statistical features of the vibrational data. Testing has been performed with the trained model to validate the model's accuracy. Later, the modeling of the DT is initiated using MATLAB-Simulink. This model has been created under the data-driven approach. The physical-virtual balance of the DT model is acknowledged utilizing the advances, taking into consideration the detailed planning of the constant state of the tool's condition. The tool condition monitoring system through the DT model is deployed through the machine learning technique. The DT model can predict the different tool conditions based on sensory data.


Assuntos
Algoritmos , Utensílios Domésticos , Coleta de Dados , Aprendizado de Máquina , Redes Neurais de Computação
3.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232007

RESUMO

This study investigates the dynamic characteristics of natural rubber (NR)/polybutadiene rubber (PBR)-based hybrid magnetorheological elastomer (MRE) sandwich composite beams through numerical simulations and finite element analysis, employing Reddy's third-order shear deformation theory. Four distinct hybrid MRE sandwich configurations were examined. The validity of finite element simulations was confirmed by comparing them with results from magnetorheological (MR)-fluid-based composites. Further, parametric analysis explored the influence of magnetic field intensity, boundary conditions, ply orientation, and core thickness on beam vibration responses. The results reveal a notable 10.4% enhancement in natural frequencies in SC4-based beams under a 600 mT magnetic field with clamped-free boundary conditions, attributed to the increased PBR content in MR elastomer cores. However, higher magnetic field intensities result in slight frequency decrements due to filler particle agglomeration. Additionally, augmenting magnetic field intensity and magnetorheological content under clamped-free conditions improves the loss factor by from 66% to 136%, presenting promising prospects for advanced applications. This research contributes to a comprehensive understanding of dynamic behavior and performance enhancement in hybrid MRE sandwich composites, with significant implications for engineering applications. Furthermore, this investigation provides valuable insights into the intricate interplay between magnetic field effects, composite architecture, and vibration response.

4.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365899

RESUMO

This paper deals with the design and development of a silver-polyester thick film sensor and associated system for the wear-out detection of single-point cutting tools for low-duty cycle machining operations. Conventional means of wear-out detection use dynamometers, accelerometers, microphones, acoustic emission sensors, thermal infrared cameras, and machine vision systems that detect tool wear during the process. Direct measurements with optical instruments are accurate but affect the machining process. In this study, the use of a thick film sensor to detect wear-out for aa real-time low-duty machining operation was proposed to eliminate the limitations of the current methods. The proposed sensor monitors the tool condition accurately as the wear acts directly on the sensor, which makes the system simple and more reliable. The effect of tool temperature on the sensor during the machining operation was also studied to determine the displacement/deformation of tracing and the polymer substrate at different service temperatures. The proposed tool wear detection system with the silver-polyester thick film sensor mounted directly on the cutting tool tip proved to be highly capable of detecting the tool wear with good reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...