Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 10001-10013, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38532610

RESUMO

The ability to create efficient artificial enzymes for any chemical reaction is of great interest. Here, we describe a computational design method for increasing the catalytic efficiency of de novo enzymes by several orders of magnitude without relying on directed evolution and high-throughput screening. Using structural ensembles generated from dynamics-based refinement against X-ray diffraction data collected from crystals of Kemp eliminases HG3 (kcat/KM 125 M-1 s-1) and KE70 (kcat/KM 57 M-1 s-1), we design from each enzyme ≤10 sequences predicted to catalyze this reaction more efficiently. The most active designs display kcat/KM values improved by 100-250-fold, comparable to mutants obtained after screening thousands of variants in multiple rounds of directed evolution. Crystal structures show excellent agreement with computational models, with catalytic contacts present as designed and transition-state root-mean-square deviations of ≤0.65 Å. Our work shows how ensemble-based design can generate efficient artificial enzymes by exploiting the true conformational ensemble to design improved active sites.


Assuntos
Enzimas , Cristalografia por Raios X , Difração de Raios X , Domínio Catalítico , Catálise , Enzimas/metabolismo
2.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961474

RESUMO

The ability to create efficient artificial enzymes for any chemical reaction is of great interest. Here, we describe a computational design method for increasing catalytic efficiency of de novo enzymes to a level comparable to their natural counterparts without relying on directed evolution. Using structural ensembles generated from dynamics-based refinement against X-ray diffraction data collected from crystals of Kemp eliminases HG3 (kcat/KM 125 M-1 s-1) and KE70 (kcat/KM 57 M-1 s-1), we design from each enzyme ≤10 sequences predicted to catalyze this reaction more efficiently. The most active designs display kcat/KM values improved by 100-250-fold, comparable to mutants obtained after screening thousands of variants in multiple rounds of directed evolution. Crystal structures show excellent agreement with computational models. Our work shows how computational design can generate efficient artificial enzymes by exploiting the true conformational ensemble to more effectively stabilize the transition state.

3.
Nat Commun ; 11(1): 4808, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968058

RESUMO

The creation of artificial enzymes is a key objective of computational protein design. Although de novo enzymes have been successfully designed, these exhibit low catalytic efficiencies, requiring directed evolution to improve activity. Here, we use room-temperature X-ray crystallography to study changes in the conformational ensemble during evolution of the designed Kemp eliminase HG3 (kcat/KM 146 M-1s-1). We observe that catalytic residues are increasingly rigidified, the active site becomes better pre-organized, and its entrance is widened. Based on these observations, we engineer HG4, an efficient biocatalyst (kcat/KM 103,000 M-1s-1) containing key first and second-shell mutations found during evolution. HG4 structures reveal that its active site is pre-organized and rigidified for efficient catalysis. Our results show how directed evolution circumvents challenges inherent to enzyme design by shifting conformational ensembles to favor catalytically-productive sub-states, and suggest improvements to the design methodology that incorporate ensemble modeling of crystallographic data.


Assuntos
Simulação por Computador , Evolução Molecular Direcionada/métodos , Enzimas/química , Evolução Química , Liases/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Enzimas/genética , Enzimas/metabolismo , Cinética , Liases/genética , Liases/metabolismo , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...