Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165148

RESUMO

Sustainable land-system transformations are necessary to avert biodiversity and climate collapse. However, it remains unclear where entry points for transformations exist in complex land systems. Here, we conceptualize land systems along land-use trajectories, which allows us to identify and evaluate leverage points, i.e., entry points on the trajectory where targeted interventions have particular leverage to influence land-use decisions. We apply this framework in the biodiversity hotspot Madagascar. In the northeast, smallholder agriculture results in a land-use trajectory originating in old-growth forests and spanning from forest fragments to shifting hill rice cultivation and vanilla agroforests. Integrating interdisciplinary empirical data on seven taxa, five ecosystem services, and three measures of agricultural productivity, we assess trade-offs and cobenefits of land-use decisions at three leverage points along the trajectory. These trade-offs and cobenefits differ between leverage points: Two leverage points are situated at the conversion of old-growth forests and forest fragments to shifting cultivation and agroforestry, resulting in considerable trade-offs, especially between endemic biodiversity and agricultural productivity. Here, interventions enabling smallholders to conserve forests are necessary. This is urgent since ongoing forest loss threatens to eliminate these leverage points due to path dependency. The third leverage point allows for the restoration of land under shifting cultivation through vanilla agroforests and offers cobenefits between restoration goals and agricultural productivity. The co-occurring leverage points highlight that conservation and restoration are simultaneously necessary to avert collapse of multifunctional mosaic landscapes. Methodologically, the framework highlights the importance of considering path dependency along trajectories to achieve sustainable land-system transformations.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais/métodos , Agricultura Florestal , Modelos Biológicos , Animais , Humanos , Madagáscar
2.
BMC Public Health ; 21(1): 1018, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051786

RESUMO

BACKGROUND: Large-scale variation in ecological parameters across Madagascar is hypothesized to drive varying spatial patterns of malaria infection. However, to date, few studies of parasite prevalence with resolution at finer, sub-regional spatial scales are available. As a result, there is a poor understanding of how Madagascar's diverse local ecologies link with variation in the distribution of infections at the community and household level. Efforts to preserve Madagascar's ecological diversity often focus on improving livelihoods in rural communities near remaining forested areas but are limited by a lack of data on their infectious disease burden. METHODS: To investigate spatial variation in malaria prevalence at the sub-regional scale in Madagascar, we sampled 1476 households (7117 total individuals, all ages) from 31 rural communities divided among five ecologically distinct regions. The sampled regions range from tropical rainforest to semi-arid, spiny forest and include communities near protected areas including the Masoala, Makira, and Mikea forests. Malaria prevalence was estimated by rapid diagnostic test (RDT) cross-sectional surveys performed during malaria transmission seasons over 2013-2017. RESULTS: Indicative of localized hotspots, malaria prevalence varied more than 10-fold between nearby (< 50 km) communities in some cases. Prevalence was highest on average in the west coast region (Morombe district, average community prevalence 29.4%), situated near protected dry deciduous forest habitat. At the household level, communities in southeast Madagascar (Mananjary district) were observed with over 50% of households containing multiple infected individuals at the time of sampling. From simulations accounting for variation in household size and prevalence at the community level, we observed a significant excess of households with multiple infections in rural communities in southwest and southeast Madagascar, suggesting variation in risk within communities. CONCLUSIONS: Our data suggest that the malaria infection burden experienced by rural communities in Madagascar varies greatly at smaller spatial scales (i.e., at the community and household level) and that the southeast and west coast ecological regions warrant further attention from disease control efforts. Conservation and development efforts in these regions may benefit from consideration of the high, and variable, malaria prevalences among communities in these areas.


Assuntos
Malária , Estudos Transversais , Humanos , Madagáscar/epidemiologia , Malária/epidemiologia , Prevalência , População Rural
3.
Front Public Health ; 8: 500, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042943

RESUMO

Madagascar has experienced significant environmental change since 1960, particularly through forest clearing for agricultural expansion. Climatic patterns are undergoing change in Madagascar as well, with increasing temperatures, droughts, and cyclonic activity. The impact of these environmental and climatic changes will pose threats to food availability, income generation, and local ecosystems, with significant potential effects on the spatial and temporal distribution of disease burden. This study seeks to describe the health status of a large sample of geographically and socially diverse Malagasy communities through multiple clinical measurements, detailed social surveys, and paired data on regional variation in local ecologies. With an increased understanding of the current patterns of variation in human health and nutrition, future studies will be better able to identify associations with climate and anticipate and mitigate the burdens expected from larger, longer-term changes. Our mixed-method approach included an observational cross-sectional study. Research subjects were men, women, and children from 1,125 households evenly distributed across 24 communities in four ecologically and socio-demographically distinct regions of Madagascar. For these 1,125 households, all persons of both sexes and all ages therein (for a total of 6,292 individuals) were recruited into the research study and a total of 5,882 individuals were enrolled. Through repeated social survey recalls and focus group meetings, we obtained social and demographic data, including broad categories of seasonal movements, and characterized the fluctuation of income generation, food production and dietary consumption. Through collection of clinical and biological samples for both point-of-care diagnoses and laboratory analyses, we obtained detailed occurrence (and importantly co-occurrence) data on micronutrient nutritional, infectious disease, and non-communicable disease status. Our research highlights the highly variable social, cultural, and environmental contexts of health conditions in Madagascar, and the tremendous inter-regional, inter-community, and intra-community variation in nutritional and disease status. More than 30% of the surveyed population was afflicted by anemia and 14% of the population had a current malaria infection. This type of rich metadata associated with a suite of biological samples and nutritional and disease outcome data should allow disentangling some of the underlying drivers of ill health across the changing landscapes of Madagascar.


Assuntos
Ecossistema , Estado Nutricional , Criança , Estudos Transversais , Características da Família , Feminino , Humanos , Madagáscar/epidemiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...