Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202491

RESUMO

Plexcitonic systems based on metal nanostructures and molecular J-aggregates offer an excellent opportunity to explore the intriguing interplay between plasmonic excitations and excitons, offering unique insights into light-matter interactions at the nanoscale. Their potential applications in photocatalysis have prompted a growing interest in both their synthesis and the analysis of their properties. However, in order to construct a high-performing system, it is essential to ensure chemical and spectral compatibility between both components. We present the results of a study into a hybrid system, achieved through the coupling of gold nanobipyramids with organic molecules, and demonstrate the strengthened photochemical properties of such a system in comparison with purely J-aggregates. Our analysis includes the absorbance and photoluminescence characterization of the system, revealing the remarkable plexcitonic interaction and pronounced coupling effect. The absorbance spectroscopy of the hybrid systems enabled the investigation of the coupling strength (g). Additionally, the photoluminescence response of the J-aggregates and coupled systems reveals the impact of the coupling regime. Utilizing fluorescence lifetime imaging microscopy, we established how the photoluminescence lifetime components of the J-aggregates are affected within the plexcitonic system. Finally, to assess the photodegradation of J-aggregates and plexcitonic systems, we conducted a comparative analysis. Our findings reveal that plasmon-enhanced interactions lead to improved photostability in hybrid systems.

2.
J Phys Chem C Nanomater Interfaces ; 126(48): 20480-20490, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36523488

RESUMO

Discerning the kinetics of photoluminescence (PL) decay of packed quantum dots (QDs) and QD-based hybrid materials is of crucial importance for achieving their promising potential. However, the interpretation of the decay kinetics of QD-based systems, which usually are not single-exponential, remains challenging. Here, we present a method for analyzing photoluminescence (PL) decay curves of fluorophores by studying their statistical moments. A certain combination of such moments, named as the n-th order moments' ratio, R n , is studied for several theoretical decay curves and experimental PL kinetics of CdSe quantum dots (QDs) acquired by time-correlated single photon counting (TCSPC). For the latter, three different case studies using the R n ratio analysis are presented, namely, (i) the effect of the inorganic shell composition and thickness of the core-shell QDs, (ii) QD systems with Förster resonance energy transfer (FRET) decay channels, and (iii) system of QDs near a layer of plasmonic nanoparticles. The proposed method is shown to be efficient for the detection of slight changes in the PL kinetics, being time-efficient and requiring low computing power for performing the analysis. It can also be a powerful tool to identify the most appropriate physically meaningful theoretical decay function, which best describes the systems under study.

3.
J Phys Chem Lett ; 13(10): 2264-2272, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35239345

RESUMO

Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD+ to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD+ reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity.


Assuntos
Ouro , Nanopartículas Metálicas , Catálise , Ouro/química , Luz , Nanopartículas Metálicas/química , Polímeros
4.
Chem Sci ; 12(38): 12794-12805, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703566

RESUMO

Resonant interaction between excitonic transitions of molecules and localized electromagnetic field allows the formation of hybrid light-matter polaritonic states. This hybridization of the light and the matter states has been shown to significantly alter the intrinsic properties of molecular ensembles placed inside the optical cavity. Here, we have observed strong coupling of excitonic transition in a pair of closely located organic dye molecules demonstrating an efficient donor-to-acceptor resonance energy transfer with the mode of a tuneable open-access cavity. Analysing the dependence of the relaxation pathways between energy states in this system on the cavity detuning, we have demonstrated that predominant strong coupling of the cavity photon to the exciton transition in the donor dye molecule can lead not only to an increase in the donor-acceptor energy transfer, but also to an energy shift large enough to cause inversion between the energy states of the acceptor and the mainly donor lower polariton energy state. Furthermore, we have shown that the polariton-assisted donor-acceptor chromophores' role reversal or "carnival effect" not only changes the relative energy levels of the donor-acceptor pair, but also makes it possible to manipulate the energy flow in the systems with resonant dipole-dipole interaction and direct energy transfer from the acceptor to the mainly donor lower polariton state. Our experimental data are the first confirmation of the theoretically predicted possibility of polariton-assisted energy transfer reversal in FRET systems, thus paving the way to new avenues in FRET-imaging, remote-controlled chemistry, and all-optical switching.

5.
Nanoscale ; 13(8): 4614-4623, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33605966

RESUMO

Excitons in semiconductor quantum dots (QDs) feature high values of the two-photon absorption cross-sections (TPACSs), enabling applications of two-photon-excited photoluminescence (TPE PL) of QDs in biosensing and nonlinear optoelectronics. However, efficient TPE PL of QDs requires high-intensity laser fields, which limits these applications. There are two possible ways to increase the TPE PL of QDs: by increasing their photoluminescence quantum yield (PLQY) or by further increasing the TPACS. Plasmonic nanoparticles (PNPs) may act as open nanocavities for increasing the PLQY via the Purcell effect, but this enhancement is strictly limited by the maximum possible PLQY value of 100%. Here we directly investigated the effect of PNPs on the effective TPACS of excitons in QDs. We have found that effective TPACS of excitons in a QD-PMMA thin film can be increased by a factor of up to 12 near the linearly excited gold nanorods (GNRs). Using gold nanospheres (GNSs), in which plasmons cannot be excited in the infrared range, as a control system, we have shown that, although both GNSs and GNRs increase the recombination rate of excitons, the TPACS is increased only in the case of GNRs. We believe that the observed effect of TPACS enhancement is a result of the nonlinear interaction of the plasmons in GNRs with excitons in QDs, which we have supported by numerical simulations. The results show the way to the rational design of the spectral features of plasmon-exciton hybrids for using them in biosensing and nonlinear optoelectronics.

6.
J Phys Chem Lett ; 11(19): 8018-8025, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886517

RESUMO

Reliable control of spontaneous radiation from quantum emitters, such as quantum dots (QDs), is an extremely important problem in quantum science, nanophotonics, and engineering. The QD photoluminescence (PL) may be enhanced near plasmon nanoparticles because of excitation field enhancement or the Purcell effect. However, both of these effects have their specific limitations. The excitation enhancement is usually accompanied by a decrease in the PL quantum yield (QY) due to the plasmon-induced energy transfer, and the Purcell effect cannot significantly enhance the PL of QDs with an initially high QY because of the obvious limitation of the QY by the value of 100%. Here, we have shown that the synergistic combination of excitation enhancement caused by silver nanospheres and the Purcell effect caused by silver nanoplates in the same QD-in-polymer hybrid thin-film nanostructure permits simultaneous increases in the radiative and excitation rates to be obtained. This overcomes the limitations of each individual effect and yields a synergistic PL increase (+1320%) greater than the sum of the PL enhancements determined by each effect alone (+70% and +360%).

7.
Nanoscale ; 12(32): 16875-16883, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32766626

RESUMO

Hybridized plexcitonic states have unique properties which have been widely studied in recent decades in many research fields targeted at both fundamental science and innovative applications. However, to make these applications come true one needs to ensure the stabilization and preservation of electronic states and optical transitions in hybrid nanostructures, especially under the influence of external stressors, in regimes, that have not yet been comprehensively investigated. The present work shows that the nanohybrid system, composed of plasmonic nanoparticles and J-aggregates of organic molecules, displays outstanding resistance to harsh environmental stressors such as temperature, pH and strong light irradiation as well as demonstrates long-term stability and processability of the nanostructures both in weak and strong coupling regimes. These findings contribute to a deeper understanding of the physicochemical properties of plexcitonic nanoparticles and may find important implications for the development of potential applications in optoelectronics, optical imaging and chemo-bio-sensing and, in general, in the field of optical materials science.

8.
J Phys Chem Lett ; 10(20): 6137-6143, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31557038

RESUMO

The interaction of several components in the strong coupling regime yielding multiple Rabi splittings opens up remarkable possibilities for studies of multimode hybridization and energy transfer, which is of considerable interest in both fundamental and applied science. Here we demonstrate that three different components, such as core-shell Au@Ag nanorods and J-aggregates of two different dyes, can be integrated into a single hybrid structure, which leads to strong collective exciton-plasmon coupling and double-mode Rabi splitting totaling 338 meV. We demonstrate strong coupling in these multicomponent plexitonic nanostructures by means of magnetic circular dichroism spectroscopy and demonstrate strong magneto-optical activity for the three hybridized states resulting from this coupling. The J-aggregates of two different nonmagnetic dyes interact with metal nanoparticles effectively, achieving magnetic properties due to the hybridization of electronic excitations in the three-component system.

9.
Opt Express ; 27(4): 4077-4089, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876029

RESUMO

Resonance interaction between a localized electromagnetic field and excited states in molecules paves the way to control fundamental properties of a matter. In this study, we encapsulated organic molecules with relatively low unoriented dipole moments in the polymer matrix, placed them in tunable optical microcavity and realized, for the first time, controllable modification of the broad photoluminescence (PL) emission of these molecules in strong coupling regime at room temperature. Notably, while in most previous studies it was reported that the single mode dominates in the PL signal (radiation of the so-called branch of the lower polariton), here we report on the observation of two distinct PL peaks, evolution of which has been followed as the microcavity mode is detuned from the excitonic resonance. A significant Rabi splitting estimated from the modified PL spectra was as large as 225 meV. The developed approach can be used both in fundamental research of resonant light-mater coupling and its practical applications in sensing and development of coherent spontaneous emission sources using a combination of carefully designed microcavity with a wide variety of organic molecules.

10.
J Phys Chem Lett ; 10(3): 481-486, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616347

RESUMO

Semiconductor quantum dots (QDs) are known for their ability to exhibit multiphoton emission caused by recombination of biexcitons (BX). However, the quantum yield (QY) of BX emission is low due to the fast Auger process. Plasmonic nanoparticles (PNPs) provide an attractive opportunity to accelerate BX radiative recombination. Here, we demonstrate the PNPs induced distance-controlled enhancement of BX emission of single QDs. Studying the same single QD before and after its integration with the PNPs, we observed a plasmon-mediated increase in the QY of BX emission. Remarkably, the enhancement of BX emission remains pronounced even at distances of 170 nm. We attribute this effect to efficient coupling, which results in the trade-off between resonance energy transfer from QD to gold nanorods and the Purcell effect at small QD-PNP separations and the predominant influence of the Purcell effect at longer distances. Our findings constitute a reliable approach to managing the efficiency of multiexciton emission over a wide span of distances, thus paving the way for new applications.

11.
Rev Sci Instrum ; 89(5): 053105, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864833

RESUMO

Light-matter interaction between a molecular ensemble and a confined electromagnetic field is a promising area of research, as it allows light-control of the properties of coupled matter. The common way to achieve coupling is to place an ensemble of molecules or quantum emitters into a cavity. In this approach, light-matter coupling is evidenced by modification of the spectral response of the emitter, which depends on the strength of interaction between emitter and cavity modes. However, there is not yet a user-friendly approach that allows the study of a large number of different and replaceable samples in a wide optical range using the same resonator. Here, we present the design of such a device that can speed up and facilitate investigation of light-matter interaction ranging from weak to strong coupling regimes in ultraviolet-visible and infrared (IR) spectral regions. The device is based on a tunable unstable λ/2 Fabry-Pérot microcavity consisting of plane and convex mirrors that satisfy the plane-parallelism condition at least at one point of the curved mirror and minimize the mode volume. Fine tuning of the microcavity length is provided by a Z-piezopositioner in a range up to 10 µm with a step of several nm. This design makes a device a versatile instrument that ensures easy finding of optimal conditions for light-matter interaction for almost any sample in both visible and IR areas, enabling observation of both electronic and vibrational couplings with microcavity modes thus paving the way to investigation of various coupling effects including Raman scattering enhancement, modification of chemical reactivity rate, lasing, and long-distance nonradiative energy transfer.

12.
Nano Lett ; 17(3): 1808-1813, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28157323

RESUMO

Plasmonic nanoparticles (PNPs) can significantly modify the optical properties of nearby organic molecules and thus present an attractive opportunity for sensing applications. However, the utilization of PNPs in conventional absorption, fluorescence, or Raman spectroscopy techniques is often ineffective due to strong absorption background and light scattering, particularly in the case of turbid solutions, cell suspensions, and biological tissues. Here we show that nonmagnetic organic molecules may exhibit magneto-optical response due to binding to a PNP. Specifically, we detect strong magnetic circular dichroism signal from supramolecular J-aggregates, a representative organic dye, upon binding to silver-coated gold nanorods. We explain this effect by strong coupling between the J-aggregate exciton and the nanoparticle plasmon, leading to the formation of a hybrid state in which the exciton effectively acquires magnetic properties from the plasmon. Our findings are fully corroborated by theoretical modeling and constitute a novel magnetic method for chemo- and biosensing, which (upon adequate PNP functionalization) is intrinsically insensitive to the organic background and thus offers a significant advantage over conventional spectroscopy techniques.

13.
Opt Express ; 24(2): A65-73, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832599

RESUMO

We studied the chiroptical properties of colloidal solution of CdSe and CdSe/ZnS quantum dots (QDs) with a cubic lattice structure which were initially prepared without use of any chiral molecules and coated with achiral ligands. We demonstrate circular dichroism (CD) activity around first and second excitonic transition of these CdSe based nanocrystals. We consider that this chiroptical activity is caused by imbalance in racemic mixtures of QDs between the left and right handed nanoparticles, which appears as a result of the formation of various defects or incorporation of impurities into crystallographic structure during their synthesis. We demonstrate that optical activity of colloidal solution of CdSe QDs with achiral ligands weakly depends on the QDs size and number of ZnS monolayers, but does not depend on the nature of achiral ligands or polarity of the solution.

14.
J Phys Chem Lett ; 7(2): 354-62, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26726134

RESUMO

We experimentally and theoretically investigate the interactions between localized plasmons in gold nanorods and excitons in J-aggregates under ambient conditions. Thanks to our sample preparation procedure we are able to track a clear anticrossing behavior of the hybridized modes not only in the extinction but also in the photoluminescence (PL) spectra of this hybrid system. Notably, while previous studies often found the PL signal to be dominated by a single mode (emission from so-called lower polariton branch), here we follow the evolution of the two PL peaks as the plasmon energy is detuned from the excitonic resonance. Both the extinction and PL results are in good agreement with the theoretical predictions obtained for a model that assumes two interacting modes with a ratio between the coupling strength and the plasmonic losses close to 0.4, indicative of the strong coupling regime with a significant Rabi splitting estimated to be ∼200 meV. The evolution of the PL line shape as the plasmon is detuned depends on the illumination wavelength, which we attribute to an incoherent excitation given by decay processes in either the metallic rods or the J-aggregates.


Assuntos
Benzimidazóis/química , Carbocianinas/química , Corantes Fluorescentes/química , Ouro/química , Nanotubos/química , Luminescência , Modelos Teóricos , Análise Espectral
15.
Nanoscale ; 6(15): 9192-7, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24981883

RESUMO

Performing far-field microscope polarization spectroscopy and finite element method simulations, we investigated experimentally and theoretically the surface plasmon modes in single Ag nanowire antennas. Our results show that the surface plasmon resonances in the single Ag nanowire antenna can be tuned from the dipole plasmon mode to a higher order plasmon mode, which would result in the emission with different intensities and polarization states, for the semiconductor quantum dots coupled to the nanowire antenna. The fluorescence polarization is changed with different polarized excitation of the 800 nm light beam, while it remains parallel to the Ag nanowire axis at the 400 nm excitation. The 800 nm incident light interacts nonresonantly with the dipole plasmon mode with the polarized excitation parallel to the Ag nanowire axis, while it excites a higher order plasmon mode with the perpendicular excitation. Under excitation of 400 nm, either the parallel or perpendicular excitation can only result in a dipole plasmon mode. In addition, we demonstrate that the single Ag nanowire antenna can work as an energy concentrator for enhancing the two-photon excited fluorescence of semiconductor quantum dots.

16.
ACS Nano ; 7(3): 2154-60, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23448202

RESUMO

We report wavelength-dependent enormous enhancement of the nonlinear refractive index of wild-type bacteriorhodopsin in the presence of semiconductor quantum dots. The effect is strongest in the region just below the absorption edge of both constituents of this hybrid material and in samples that show strong Förster resonance energy transfer. We show that enhancements of up to 4000% can be achieved by controlled engineering of the hybrid structure involving variations of the molar ratio of the constituents. This new hybrid material with exceptional nonlinear properties will have numerous photonic and optoelectronic applications employing its photochromic, energy transfer, and conversion properties.


Assuntos
Bacteriorodopsinas/química , Compostos de Cádmio/química , Nanoestruturas/química , Pontos Quânticos , Telúrio/química , Substituição de Aminoácidos , Bacteriorodopsinas/genética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nanocompostos/química , Nanotecnologia , Dinâmica não Linear , Fenômenos Ópticos
17.
Nanoscale Res Lett ; 8(1): 134, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23522305

RESUMO

Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates results in a Rabi splitting reaching 260 meV. Importantly, broad absorption features of nanostars extending over a visible and near-infrared spectral range allowed us to demonstrate double Rabi splitting resulting from the simultaneous coherent coupling between plasmons of the nanostars and excitons of J-aggregates of two different cyanine dyes.

18.
Opt Express ; 19(22): 22280-91, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109070

RESUMO

We have studied the optical properties of a hybrid system consisting of cyanine dye J-aggregates attached to a spherical microcavity. A periodic structure of narrow peaks was observed in the photoluminescence spectrum of the J-aggregates, arising from the coupling between the emission of J-aggregates and the whispering gallery modes (WGMs) of the microcavity. The most striking result of our study is the observation of polarization sensitive mode damping caused by re-absorption of J-aggregate emission. This effect manifests itself in dominating emission from TM modes in the spectral region of J-aggregates absorption band where the TE modes are strongly suppressed. In contrast, the TE modes totally dominate emission spectrum in the region where absorption is negligible. We also demonstrate that the emission intensity can be further enhanced by depositing a hybrid layer of J-aggregates and Ag nanoparticles onto the spherical microcavity. Owing to the concerted action of WGMs and plasmonic hot spots in the Ag aggregates, we observe an enhanced Raman signal from the J-aggregates. Microcavities covered by J-aggregates and plasmonic nanoparticles could be thus useful for a variety of photonic applications in basic science and technology.

19.
J Biomed Opt ; 16(7): 077007, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806287

RESUMO

Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution.


Assuntos
Técnicas Biossensoriais/métodos , Pterinas/análise , Prata , Análise Espectral Raman/métodos , Coloides , Nanopartículas Metálicas , Fenômenos Ópticos , Propriedades de Superfície , Xantopterina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...