Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(5-1): 054139, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559436

RESUMO

Wang-Landau simulations offer the possibility to integrate explicitly over a collective coordinate and stochastically over the remainder of configuration space. We propose to choose the so-called "slow mode," which is responsible for large autocorrelation times and thus critical slowing down, for collective integration. We study this proposal for the Ising model and the linear-log-relaxation (LLR) method as simulation algorithm. We first demonstrate supercritical slowing down in a phase with spontaneously broken symmetry and for the heat-bath algorithms, for which autocorrelation times grow exponentially with system size. By contrast, using the magnetization as collective coordinate, we present evidence that supercritical slowing down is absent. We still observe a polynomial increase of the autocorrelation time with volume (critical slowing down), which is, however, reduced by orders of magnitude when compared to local update techniques.

2.
Phys Rev Lett ; 118(24): 242001, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665659

RESUMO

Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

3.
Phys Rev Lett ; 115(6): 062001, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26296110

RESUMO

We compute the electric dipole moment d(n) of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing θ term. The latter is rotated into a pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle θ is taken to be purely imaginary. The physical value of dd(n) is obtained by analytic continuation. We find d(n)=-3.9(2)(9)×10(-16) θ e cm, which, when combined with the experimental limit on d(n), leads to the upper bound |θ|≲7.4×10(-11).

4.
Phys Rev Lett ; 114(9): 091802, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793800

RESUMO

The strange contribution to the electric and magnetic form factors of the nucleon is determined at a range of discrete values of Q^{2} up to 1.4 GeV^{2}. This is done by combining a recent analysis of lattice QCD results for the electromagnetic form factors of the octet baryons with experimental determinations of those quantities. The most precise result is a small negative value for the strange magnetic moment: G_{M}^{s}(Q^{2}=0)=-0.07±0.03µ_{N}. At larger values of Q^{2} both the electric and magnetic form factors are consistent with zero to within 2 standard deviations.

5.
Phys Rev Lett ; 108(22): 222001, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003587

RESUMO

We compute the strangeness and light-quark contributions Δs, Δu, and Δd to the proton spin in n(f)=2 lattice QCD at a pion mass of about 285 MeV and at a lattice spacing a≈0.073 fm, using the nonperturbatively improved Sheikholeslami-Wohlert Wilson action. We carry out the renormalization of these matrix elements, which involves mixing between contributions from different quark flavors. Our main result is the small negative value Δs(MS)(√(7.4) GeV)=-0.020(10)(4) of the strangeness contribution to the nucleon spin. The second error is an estimate of the uncertainty, due to the missing extrapolation to the physical point.

6.
Phys Rev Lett ; 103(7): 072001, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19792633

RESUMO

We report on the first lattice calculation of light-cone distribution amplitudes of the N*(1535) resonance, which are used to calculate the transition form factors at large momentum transfers using light-cone sum rules. In the region Q2>2 GeV2, where the light-cone expansion is expected to converge, the results appear to be in good agreement with the experimental data.

7.
Phys Rev Lett ; 101(12): 122001, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18851362

RESUMO

We present the first calculation of the transverse spin structure of the pion in lattice QCD. Our simulations are based on two flavors of nonperturbatively improved Wilson fermions, with pion masses as low as 400 MeV in volumes up to (2.1 fm)(3) and lattice spacings below 0.1 fm. We find a characteristic asymmetry in the spatial distribution of transversely polarized quarks. This asymmetry is very similar in magnitude to the analogous asymmetry we previously obtained for quarks in the nucleon. Our results support the hypothesis that all Boer-Mulders functions are alike.

8.
Phys Rev Lett ; 98(22): 222001, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17677836

RESUMO

We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-Mulders function h(1/1), describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks.

9.
Phys Rev Lett ; 92(4): 042002, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14995365

RESUMO

We perform a quenched lattice calculation of the first moment of twist-two generalized parton distribution functions of the proton, and assess the total quark (spin and orbital angular momentum) contribution to the spin of the proton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...