Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 40903-40915, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847947

RESUMO

The growing world population and the development of civilization put pressure on the environment. Irreversible climate changes, biodiversity loss, ocean acidification, land and water degradation, and food scarcity took place. Climate changes affect human health through extreme atmospheric phenomena or indirect effects of ecosystem disruption. The intensification of natural disasters increases the risk of technical failures, and the growing production and release of larger quantities and more new chemical compounds, with different hazard potentials, exceeds the environment's adaptability and societies' ability to monitor changes and conduct safety assessments. The article reviews the knowledge and approach to the possibility of reducing the risks and effects of events resulting from chemical pollution. As stated, prevention of further environmental degradation and increased preparedness for natural disasters caused by climate change is critical to public safety and requires contingency plans to continuously adapt to the changing frequency, intensity, and scale of natural disasters.


Assuntos
Mudança Climática , Poluição Ambiental , Humanos , Desastres , Ecossistema
2.
Sci Rep ; 11(1): 20483, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650169

RESUMO

For many years, there has been a growing interest in technologies enabling the replacement of conventional polymer composites with new materials made from renewable raw materials. It is important to assess the behaviour of biocomposites in various environments, including humid conditions. Recently, ionic liquids have been studied as potential modificators of polymers properties, especially flame retardants. In previous study the impact of ionic liquids on thermal and mechanical properties of biocomposites was assessed. In this study the influence of ionic liquids on moisture absorption properties of biocomposites at different relative humidities (RH) was assessed. The biocomposites were built from polyethylene from renewable resources reinforced with flax or hemp fibers. The effect of the addition of 0.5, 1.0, 2.5 and 5 wt.% phosphonium ionic liquids on the moisture absorption properties of biopolyethylene biocomposite reinforced with natural fibers were tested. Mixtures of biopolyethylene, natural fibers and ionic liquid were calendered at 180 °C and then were compounded by injection moulding. The prepared samples were then characterized for their moisture uptake at 30%, 50% and 100% RH. Moisture absorption by biocomposites depended on the structure of the ionic liquid and the type of fiber. The saturation of moisture of about 0.054% was found for samples modified with tributylethylphosphonium diethyl phosphate and reinforced with flax and hemp fibers at RH 100%. The environmental resistance of the materials was found to be improved after the addition of trihexyltetradecylphosphonium bis (2,4,4-trimethylpentyl) phosphinate. Biocomposites with hemp fibers showed slightly less absorption than with flax fibers. It was also observed that ionic liquids: (bis (2,4,4-trimethylpentyl) phosphinate trihexyltetradecylphosphonate) and (bis (2-ethylhexyl) trihexyltetradecylphosphonium phosphate) protect PE biocomposites with plant fibers against mold in high humidity conditions (RH 100%).

3.
Sci Rep ; 10(1): 8824, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483220

RESUMO

During rescue operations related to the elimination of the effects of industrial accidents or natural disasters, extinguishing agents are used that affect the migration and transformation of contamination in the environment. Firefighting foam sprayed onto an oil spill slowly drains to an aqueous solution and penetrates the soil. The role of surfactants in the removal of petroleum derivatives is well known, but such extinguishing agents also contain solvents, preservatives, corrosion inhibitors and other ingredients that can reduce the beneficial effect of surfactants on soil remediation. The article presents the results of research on the remediation of soil contaminated with diesel fuel and enhanced with firefighting agents used to extinguish fires or remove oil spills on the road. The obtained results of biodegradation and leaching studies indicate differences in the efficiency of diesel fuel removal from soils. It was also found that Wet 1% reduces the amount of polycyclic aromatic hydrocarbons (PAHs) in the soil compared to oily samples not wetted with extinguishing solutions. Chromatographic analyses have shown both the hydrocarbons degradation and the possibility of their transformation into more hazardous compounds. The effectiveness of soil remediation depends on the chemical composition of the extinguishing agent used on the contaminated soil.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32380661

RESUMO

The aim of this study was to compare the concentrations of particulate matter (PM) and PM-bound polycyclic aromatic hydrocarbons (PAHs) during the combustion of various types of materials (i.e., oak, beech, and pine wood, polypropylene, polyurethane, paper, cotton, and oriented strand board (OSB)), and to compare the carcinogenic, mutagenic, and toxic potential of the emissions during the burning of these materials. Personal portable sampling devices were used to collect samples and to determine concentrations of PM4, total suspended particles (TSPs), PM-bound PAHs. The samples were collected during controlled fires under laboratory conditions. The highest PM concentration was recorded during the burning of polyurethane (PM4-1818 mg/m3, TSP-2800 mg/m3), while the highest concentration of PAH mixture was recorded when burning OSB (628.5 µg/m3 PM4-bound; 791.2 µg/m3 TSP-bound PAHs). Thus, the highest carcinogenic (85.5 µg/m3), mutagenic (68.2 µg/m3) and toxic equivalents (26.4 ng/m3) of the PAH mixture were noted during OSB combustion. Carcinogenic potential (CP) of PAH group was determined mainly by phenanthrene (CP on average 21.6%) and pyrene concentrations (13.3%). The results of the study express possible adverse effects from PM-bound PAHs released during combustion for firefighters and other people staying near a fire site.


Assuntos
Poluentes Atmosféricos , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Carcinógenos , Monitoramento Ambiental , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...