Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(26): 9700-12, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23631473

RESUMO

A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(P(Cy)2N(t-Bu)2)2](BF4)2 (P(Cy)2N(t-Bu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex gives three isomers of the doubly protonated Ni(0) complex [Ni(P(Cy)2N(t-Bu)2H)2](BF4)2. Using the pKa values and Ni(II/I) and Ni(I/0) redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(P(Cy)2N(t-Bu)2)2](2+) was determined to be -7.9 kcal mol(-1). The catalytic rate observed in dry acetonitrile for the oxidation of H2 depends on base size, with larger bases (NEt3, t-BuNH2) resulting in much slower catalysis than n-BuNH2. The addition of water accelerates the rate of catalysis by facilitating deprotonation of the hydrogen addition product before oxidation, especially for the larger bases NEt3 and t-BuNH2. This catalytic pathway, where deprotonation occurs prior to oxidation, leads to an overpotential that is 0.38 V lower compared to the pathway where oxidation precedes proton movement. Under the optimal conditions of 1.0 atm H2 using n-BuNH2 as a base and with added water, a turnover frequency of 58 s(-1) is observed at 23 °C.


Assuntos
Aminas/química , Complexos de Coordenação/química , Hidrogênio/química , Níquel/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Conformação Molecular , Oxirredução
2.
J Am Chem Soc ; 134(47): 19409-24, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23072436

RESUMO

To examine the role of proton delivery and removal in the electrocatalytic oxidation and production of hydrogen by [Ni(P(R)(2)N(R')(2))(2)](2+) (where P(R)(2)N(R')(2) is 1,5-R'-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), we report experimental and theoretical studies of the intermolecular proton exchange reactions underlying the isomerization of [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (Cy = cyclohexyl, Bn = benzyl) species formed during the oxidation of H(2) by [Ni(II)(P(Cy)(2)N(Bn)(2))(2)](2+) or the protonation of [Ni(0)(P(Cy)(2)N(Bn)(2))(2)]. Three protonated isomers are formed (endo/endo, endo/exo, or exo/exo), which differ in the position of the N-H bond's with respect to nickel. The endo/endo isomer is the most productive isomer due to the two protons being sufficiently close to the nickel to proceed readily to the transition state to form/cleave H(2). Therefore, the rate of isomerization of the endo/exo or exo/exo isomers to generate the endo/endo isomer can have an important impact on catalytic rates. We have found that the rate of isomerization is limited by proton removal from, or delivery to, the complex. In particular, the endo position is more sterically hindered than the exo position; therefore, protonation exo to the metal is kinetically favored over endo protonation, which leads to less catalytically productive pathways. In hydrogen oxidation, deprotonation of the sterically hindered endo position by an external base may lead to slow catalytic turnover. For hydrogen production catalysts, the limited accessibility of the endo position can result in the preferential formation of the exo protonated isomers, which must undergo one or more isomerization steps to generate the catalytically productive endo protonated isomer. The results of these studies highlight the importance of precise proton delivery, and the mechanistic details described herein will be used to guide future catalyst design.


Assuntos
Hidrogênio/química , Níquel/química , Compostos Organometálicos/química , Prótons , Catálise , Cinética , Modelos Moleculares , Conformação Molecular , Oxirredução
3.
Chem Commun (Camb) ; 46(45): 8618-20, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20938535

RESUMO

A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(P(Cy)(2)N(t-Bu)(2))(2)](2+) has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turnover rate of 50 s(-1) under 1.0 atm H(2) at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H(2) oxidation catalyst.

4.
Dalton Trans ; 39(12): 3001-10, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20221533

RESUMO

Nickel(II) bis(diphosphine) complexes that contain positioned bases in the second coordination sphere have been found to catalyze the reduction of O(2) with H(2) to selectively form water. The complexes also serve as electrocatalysts for the reduction of O(2) with the addition of a weak acid. In contrast, a closely related nickel diphosphine complex without the positioned bases is catalytically inactive for O(2) reduction. These results indicate that pendant bases in synthetic catalysts for O(2) reduction can play a similar role to proton relays in enzymes, and that such relays should be considered in the design of catalysts for multi-electron and multi-proton reactions.


Assuntos
Aminas/química , Níquel/química , Oxigênio/química , Fosfinas/química , Catálise , Eletroquímica , Hidrogênio/química , Peróxido de Hidrogênio/química , Estrutura Molecular , Oxidantes/química , Oxirredução , Água/química
5.
Acc Chem Res ; 42(12): 1974-82, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19645445

RESUMO

The conversion of solar energy to fuels in both natural and artificial photosynthesis requires components for both light-harvesting and catalysis. The light-harvesting component generates the electrochemical potentials required to drive fuel-generating reactions that would otherwise be thermodynamically uphill. This Account focuses on work from our laboratories on developing molecular electrocatalysts for CO(2) reduction and for hydrogen production. A true analog of natural photosynthesis will require the ability to capture CO(2) from the atmosphere and reduce it to a useful fuel. Work in our laboratories has focused on both aspects of this problem. Organic compounds such as quinones and inorganic metal complexes can serve as redox-active CO(2) carriers for concentrating CO(2). We have developed catalysts for CO(2) reduction to form CO based on a [Pd(triphosphine)(solvent)](2+) platform. Catalytic activity requires the presence of a weakly coordinating solvent molecule that can dissociate during the catalytic cycle and provide a vacant coordination site for binding water and assisting C-O bond cleavage. Structures of [NiFe] CO dehydrogenase enzymes and the results of studies on complexes containing two [Pd(triphosphine)(solvent)](2+) units suggest that participation of a second metal in CO(2) binding may also be required for achieving very active catalysts. We also describe molecular electrocatalysts for H(2) production and oxidation based on [Ni(diphosphine)(2)](2+) complexes. Similar to palladium CO(2) reduction catalysts, these species require the optimization of both first and second coordination spheres. In this case, we use structural features of the first coordination sphere to optimize the hydride acceptor ability of nickel needed to achieve heterolytic cleavage of H(2). We use the second coordination sphere to incorporate pendant bases that assist in a number of important functions including H(2) binding, H(2) cleavage, and the transfer of protons between nickel and solution. These pendant bases, or proton relays, are likely to be important in the design of catalysts for a wide range of fuel production and fuel utilization reactions involving multiple electron and proton transfer steps. The generation of fuels from abundant substrates such as CO(2) and water remains a daunting research challenge, requiring significant advances in new inexpensive materials for light harvesting and the development of fast, stable, and efficient electrocatalysts. Although we describe progress in the development of redox-active carriers capable of concentrating CO(2) and molecular electrocatalysts for CO(2) reduction, hydrogen production, and hydrogen oxidation, much more remains to be done.


Assuntos
Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Aldeído Oxirredutases/metabolismo , Dióxido de Carbono/química , Catálise , Domínio Catalítico , Técnicas Eletroquímicas , Hidrogênio/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Conformação Molecular , Complexos Multienzimáticos/metabolismo , Oxirredução , Paládio/química
6.
Chem Soc Rev ; 38(1): 62-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19088965

RESUMO

This tutorial review describes the development of discrete transition metal complexes as electrocatalysts for H2 formation and oxidation. The approach involves the study of thermodynamic properties of metal hydride intermediates and the design of ligands that incorporate proton relays. The work is inspired by structural features of the H2ase enzymes and should be of interest to researchers in the areas of biomimetic chemistry as well as catalyst design and hydrogen utilization.


Assuntos
Catálise , Hidrogênio/metabolismo , Metais/química , Oxirredução , Biomimética/tendências , Cobalto/química , Cobalto/metabolismo , Fontes Geradoras de Energia , Hidrogenase/química , Ligantes , Metais/metabolismo , Níquel/química , Níquel/metabolismo , Termodinâmica , Elementos de Transição/química , Elementos de Transição/metabolismo
7.
J Am Chem Soc ; 128(1): 358-66, 2006 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-16390166

RESUMO

Highly efficient electrocatalysts for both hydrogen evolution and hydrogen oxidation have been designed, synthesized, and characterized. The catalysts in their resting states are air-stable, mononuclear nickel(II) complexes containing cyclic diphosphine ligands with nitrogen bases incorporated into the ligand backbone. X-ray diffraction studies have established that the cation of [Ni(P(Ph)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), 6a, (where P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane) is a trigonal bipyramid with bonds to four phosphorus atoms of the two bidentate diphosphine ligands and the nitrogen atom of an acetonitrile molecule. Two of the six-membered rings formed by the diphosphine ligands and Ni have boat conformations with an average Ni- - -N distance to the two pendant bases of 3.4 A. The cation of [Ni(P(Cy)(2)N(Bz)(2))(2)](BF(4))(2), 6b, (where Cy = cyclohexyl and Bz = benzyl) is a distorted square planar complex. For 6b, all four six-membered rings formed upon coordination of the diphosphine ligands to the metal are in the boat form. In this case, the average Ni- - -N distance to the pendant base is 3.3 A. Complex 6a is an electrocatalyst for hydrogen production in acidic acetonitrile solutions, and compound 6b is an electrocatalyst for hydrogen oxidation in basic acetonitrile solutions. It is demonstrated that the high catalytic rates observed with these complexes are a result of the positioning of the nitrogen base so that it plays an important role in the formation and cleavage of the H-H bond.

8.
Inorg Chem ; 44(9): 3046-56, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15847408

RESUMO

The reactions of bicarbonate ion with a series of binuclear Cu(II) complexes in buffered aqueous solution have been studied, and effective binding constants for bicarbonate have been determined at pH 7.4 for the complexes [Cu2(taec)]4+ (taec = N,N',N'',N'''-tetrakis(2-aminoethyl)-1,4,8,11-tetraazacyclotetradecane) and [Cu2(tpmc)(OH)]3+ (tpmc = N, N',N'',N'''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane). [Cu2(o-xyl-DMC2)]4+ (o-xyl-DMC2 = alpha,alpha'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene) did not react with bicarbonate ion in an aqueous solution buffered at this pH. The complexes were reduced by controlled-potential electrolysis, and the stability of the Cu(I) derivatives in aqueous solution and their affinity for bicarbonate/carbonate ion were investigated. On the basis of these fundamental studies, [Cu2(tpmc)(mu-OH)]3+ has been identified as an air-stable, water-soluble carrier for the capture and concentration of CO2 by electrochemically modulated complexation. The carrier binds to the carbonate ion strongly in its oxidized, Cu(II) form and releases the ion rapidly when reduced to the Cu(I) complex. In small-scale electrochemical pumping experiments designed to demonstrate the feasibility of this approach, CO2 has been pumped from an initial 10% CO2/N2 mixture up to a final concentration of 75%.

9.
Inorg Chem ; 44(2): 365-73, 2005 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-15651883

RESUMO

Bicarbonate ion reacts with the dinuclear nickel(II) complex containing the taec ligand (taec = N,N',N' ',N' ''-tetrakis(2-aminoethyl)-1,4,8,11-tetraazacyclotetradecane) in buffered aqueous solution to form the mu-eta(2),eta(2)-carbonate complex with a large effective binding constant for bicarbonate ion, log K(B) = 4.39 at pH = 7.4. In contrast, the dinuclear nickel(II) complex containing the o-xyl-DMC(2) ligand (o-xyl-DMC(2) = alpha,alpha'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene) does not react with bicarbonate or carbonate ion in aqueous solution. In propylene carbonate, the reaction of [Ni(2)(o-xyl-DMC(2))](4+) with bicarbonate proceeds rapidly to form the mu-eta(1),eta(1)-carbonate complex. The structure of this carbonate complex has been determined by an X-ray diffraction study that confirms the mu-eta(1),eta(1)-carbonate binding mode. A mononuclear analogue of [Ni(2)(taec)](4+), [Ni(2,3,2-tetraamine)](2+) does not form a detectable mononuclear or dinuclear product with bicarbonate ion in aqueous solution, but [NiDMC](2+) (DMC = 5,7-dimethyl-1,4,8,11-tetraazacyclotetradecane) reacts slowly with carbonate ion in aqueous solution to form a 2:1 complex.

10.
J Am Chem Soc ; 125(40): 12230-6, 2003 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-14519008

RESUMO

The thermodynamic hydride donor abilities of [HW(CO)(5)](-) (40 kcal/mol), [HW(CO)(4)P(OMe(3))](-) (37 kcal/mol), and [HW(CO)(4)(PPh(3))](-) (36 kcal/mol) have been measured in acetonitrile by either equilibrium or calorimetric methods. The hydride donor abilities of these complexes are compared with other complexes for which similar thermodynamic measurements have been made. [HW(CO)(5)](-), [HW(CO)(4)P(OMe(3))](-), and [HW(CO)(4)(PPh(3))](-) all react rapidly with [CpRe(PMe(3))(NO)(CO)](+) to form dinuclear intermediates with bridging formyl ligands. These intermediates slowly form [CpRe(PMe(3))(NO)(CHO)] and [W(CO)(4)(L)(CH(3)CN)]. The structure of cis-[HW(CO)(4)(PPh(3))](-) has been determined and has the expected octahedral structure. The hydride ligand bends away from the CO ligand trans to PPh(3) and toward PPh(3).


Assuntos
Hidrogênio/química , Compostos Organometálicos/química , Tungstênio/química , Monóxido de Carbono/química , Cristalografia por Raios X , Cinética , Compostos Organofosforados/química , Termodinâmica
11.
Inorg Chem ; 42(5): 1556-63, 2003 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-12611523

RESUMO

The reaction of Cp'ReCl(2)S(3) (Cp' = Me(4)EtC(5)) with slightly less than 2 equiv of a phosphine reagent results in the formation of [Cp'Re(Cl)(2)(mu-S)](2), 2, which has been characterized by an X-ray diffraction study. Reactions of 2 with nucleophiles did not lead to monomeric derivatives of the type Cp'ReS(Cl)(2)(Nuc). The reaction of Cp'ReCl(2)(SC(2)H(4)S) with (Me(3)Si)(2)S resulted in the formation of three new products: Cp'ReS(SC(2)H(4)S), 4; Cp'Re(S(3))(SC(2)H(4)S), 5; and a tetranuclear derivative, [(Cp'Re)(2)(mu-S)(mu,eta(2)-SC(2)H(4)S)(mu,eta(1)-SC(2)H(4)S](2)Cl(2), 6. Complexes 4 and 6 have been characterized by X-ray diffraction studies. The electrochemical properties of the mononuclear Re=S derivative, 4, are compared with those of Re=O and Re=NR analogues.

12.
Inorg Chem ; 42(1): 216-27, 2003 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-12513098

RESUMO

The reaction of Et(2)PCH(2)N(Me)CH(2)PEt(2) (PNP) with [Ni(CH(3)CN)(6)](BF(4))(2) results in the formation of [Ni(PNP)(2)](BF(4))(2), which possesses both hydride- and proton-acceptor sites. This complex is an electrocatalyst for the oxidation of hydrogen to protons, and stoichiometric reaction with hydrogen forms [HNi(PNP)(PNHP)](BF(4))(2), in which a hydride ligand is bound to Ni and a proton is bound to a pendant N atom of one PNP ligand. The free energy associated with this reaction has been calculated to be -5 kcal/mol using a thermodynamic cycle. The hydride ligand and the NH proton undergo rapid intramolecular exchange with each other and intermolecular exchange with protons in solution. [HNi(PNP)(PNHP)](BF(4))(2) undergoes reversible deprotonation to form [HNi(PNP)(2)](BF(4)) in acetonitrile solutions (pK(a) = 10.6). A convenient synthetic route to the PF(6)(-) salt of this hydride involves the reaction of PNP with Ni(COD)(2) to form Ni(PNP)(2), followed by protonation with NH(4)PF(6). A pK(a) of value of 22.2 was measured for this hydride. This value, together with the half-wave potentials of [Ni(PNP)(2)](BF(4))(2), was used to calculate homolytic and heterolytic Ni-H bond dissociation free energies of 55 and 66 kcal/mol, respectively, for [HNi(PNP)(2)](PF(6)). Oxidation of [HNi(PNP)(2)](PF(6)) has been studied by cyclic voltammetry, and the results are consistent with a rapid migration of the proton from the Ni atom of the resulting [HNi(PNP)(2)](2+) cation to the N atom to form [Ni(PNP)(PNHP)](2+). Estimates of the pK(a) values of the NiH and NH protons of these two isomers indicate that proton migration from Ni to N should be favorable by 1-2 pK(a) units. Cyclic voltammetry and proton exchange studies of [HNi(depp)(2)](PF(6)) (where depp is Et(2)PCH(2)CH(2)CH(2)PEt(2)) are also presented as control experiments that support the important role of the bridging N atom of the PNP ligand in the proton exchange reactions observed for the various Ni complexes containing the PNP ligand. Similarly, structural studies of [Ni(PNBuP)(2)](BF(4))(2) and [Ni(PNP)(dmpm)](BF(4))(2) (where PNBuP is Et(2)PCH(2)N(Bu)CH(2)PEt(2) and dmpm is Me(2)PCH(2)PMe(2)) illustrate the importance of tetrahedral distortions about Ni in determining the hydride acceptor ability of Ni(II) complexes.


Assuntos
Hidrogenase , Níquel/química , Compostos Organometálicos/química , Prótons , Catálise , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Oxirredução , Difração de Raios X
13.
J Am Chem Soc ; 124(33): 9878-86, 2002 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12175248

RESUMO

The thermal reactions of the Re(V) dithiolate complex Cp'ReCl2(SCH2CH2S), 1 (where Cp' = EtMe4C5), and related derivatives have been studied. When 1 is heated in toluene in a sealed evacuated tube at 100 degrees C, a dehydrogenation reaction occurs to form a new rhenium complex with a dithiolene ligand, Cp'ReCl2(SCHCHS), 6, in ca. 40% yield. The structure of 6 has been confirmed by an X-ray diffraction study. Under the thermal conditions studied, 1 also undergoes an olefin extrusion reaction. Free ethene is detected in the NMR spectrum of the products, and insoluble rhenium products are also formed. When 1 is reacted with excess ethene under mild conditions, a new organic product, 1,4-dithiane, is formed. Complex 1 is also found to react with oxidants, such as O2 and S8, under mild conditions to form the dehydrogenation product 6. Kinetic studies of the thermal reaction of 1 and related derivatives have been completed, and possible mechanisms for the thermally induced dehydrogenation reaction are discussed.

15.
Inorg Chem ; 35(11): 3228-3234, 1996 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-11666522

RESUMO

The reaction of TaMe(3)Cl(2) with the lithium salt of tetramethylpyrrole (Li-TMP) led to the formation of (eta(5)-TMP)TaMe(3)Cl (1). Reactions of 1 with a series of anionic ligands have been carried out to form products of the formula (eta(5)-TMP)TaMe(3)X, where X = SR, Me, pyrrolyl, or indolyl. Crystals of (eta(5)-TMP)TaMe(3)(indolyl) (5), were isolated in space group P2(1)/c with a = 8.957(2) Å, b = 28.540(6) Å, c = 14.695(3) Å, beta = 99.40(3) degrees, V = 3706.1(14) Å(3), and Z = 8. The structure confirmed the eta(5)-bonding mode of the tetramethylpyrrolyl ligand and the eta(1)-N-coordination mode of the indolyl ligand.The derivatives (eta(5)-TMP)TaMe(3)X showed limited stability, and decomposition products which formed in toluene solutions at room temperature have been identified in some cases. The reaction of (eta(5)-TMP)TaMe(3)(pyrrolyl) with hydrogen (2-3 atm) in benzene-d(6) solution at room temperature was studied. The stoichiometric formation of cyclohexane-d(6) by hydrogenation of an equivalent of solvent was confirmed by (1)H and (13)C NMR and gas chromatographic/mass spectroscopic data. The characteristics and scope of the room temperature arene hydrogenation process are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...