Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 11(Pt 2): 129-31, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14960776

RESUMO

The National Synchrotron Light Source (NSLS) 2.8 GeV electron storage ring continues to set high standards in insertion-device research and development. The Chasman-Green NSLS lattice design provides for dispersion-free long straight sections in addition to a very small vertical beta function. As the electron beam size is proportional to the square root of this function, a program to exploit this feature was undertaken more than a decade ago by implementing short-period small-gap insertion devices in the NSLS storage ring. The possibility of utilizing existing moderate-energy synchrotron radiation electron storage rings to produce high-brightness photon beams into the harder X-ray region have been realised using in-vacuum undulators. In this article the operation of a 1.25 cm-period mini-gap undulator, operating down to a gap of 3.3 mm within the NSLS X13 straight section, is reported. It is the brightest source of hard X-rays in the energy range approximately 3.7-16 keV at the NSLS, and replaces an in-vacuum undulator which had a more limited tunability.


Assuntos
Cristalografia por Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Síncrotrons/instrumentação , Transdutores , Cristalografia por Raios X/métodos , Miniaturização , Estados Unidos
2.
Phys Rev Lett ; 91(7): 074801, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12935021

RESUMO

We report the first experimental results on a high-gain harmonic-generation (HGHG) free-electron laser (FEL) operating in the ultraviolet. An 800 nm seed from a Ti:sapphire laser has been used to produce saturated amplified radiation at the 266 nm third harmonic. The results confirm the predictions for HGHG FEL operation: stable central wavelength, narrow bandwidth, and small pulse-energy fluctuation.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(6 Pt 2): 066501, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16241361

RESUMO

VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission (SASE) free-electron laser (FEL), which achieved saturation at 840 nm within a single-pass 4-m undulator. The experiment was performed at the Accelerator Test Facility at BNL, using a high brightness 70-MeV electron beam. A gain length shorter than 18 cm has been obtained, yielding a total gain of 2 x 10(8) at saturation. The FEL performance, including the spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. Results are compared to the three-dimensional SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL systems. An agreement between simulations and experimental results has been obtained at an unprecedented level of detail.

4.
Phys Rev Lett ; 86(26 Pt 1): 5902-5, 2001 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-11415390

RESUMO

We report on an experimental investigation characterizing the output of a high-gain harmonic-generation (HGHG) free-electron laser (FEL) at saturation. A seed CO2 laser at a wavelength of 10.6 microm was used to generate amplified FEL output at 5.3 microm. Measurement of the frequency spectrum, pulse duration, and correlation length of the 5.3 microm output verified that the light is longitudinally coherent. Investigation of the electron energy distribution and output harmonic energies provides evidence for saturated HGHG FEL operation.

5.
Science ; 289(5481): 932-5, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10937992

RESUMO

A high-gain harmonic-generation free-electron laser is demonstrated. Our approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser. A seed carbon dioxide laser at a wavelength of 10.6 micrometers produced saturated, amplified free-electron laser output at the second-harmonic wavelength, 5.3 micrometers. The experiment verifies the theoretical foundation for the technique and prepares the way for the application of this technique in the vacuum ultraviolet region of the spectrum, with the ultimate goal of extending the approach to provide an intense, highly coherent source of hard x-rays.

6.
J Synchrotron Radiat ; 5(Pt 3): 417-9, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15263530

RESUMO

A short-period in-vacuum undulator for the NSLS X-ray Ring has been developed in a collaboration between SPring-8 and the NSLS, and has achieved its project design goals during commissioning studies. The device is called IVUN (in-vacuum undulator) and employs magnet arrays (31 periods, with an 11 mm period) developed at SPring-8, while the requisite vacuum chamber and mechanical systems were developed at the NSLS. At a magnet gap of 3.3 mm, IVUN produces 4.6 keV radiation in the fundamental, with useful photon fluxes in both the second and third harmonics. The magnet gap is adjustable between 2 and 10 mm. A brief overview of IVUN is presented, together with initial commissioning results: the dependence of electron-beam lifetime and bremsstrahlung on magnet gap, and the output radiation spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...