Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 179(3): 958-968, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30337452

RESUMO

Plants synthesize the thiazole precursor of thiamin (cThz-P) via THIAMIN4 (THI4), a suicide enzyme that mediates one reaction cycle and must then be degraded and resynthesized. It has been estimated that this THI4 turnover consumes 2% to 12% of the maintenance energy budget and that installing an energy-efficient alternative pathway could substantially increase crop yield potential. Available data point to two natural alternatives to the suicidal THI4 pathway: (i) nonsuicidal prokaryotic THI4s that lack the active-site Cys residue on which suicide activity depends, and (ii) an uncharacterized thiazole synthesis pathway in flowers of the tropical arum lily Caladium bicolor that enables production and emission of large amounts of the cThz-P analog 4-methyl-5-vinylthiazole (MVT). We used functional complementation of an Escherichia coli ΔthiG strain to identify a nonsuicidal bacterial THI4 (from Thermovibrio ammonificans) that can function in conditions like those in plant cells. We explored whether C. bicolor synthesizes MVT de novo via a novel route, via a suicidal or a nonsuicidal THI4, or by catabolizing thiamin. Analysis of developmental changes in MVT emission, extractable MVT, thiamin level, and THI4 expression indicated that C. bicolor flowers make MVT de novo via a massively expressed THI4 and that thiamin is not involved. Functional complementation tests indicated that C. bicolor THI4, which has the active-site Cys needed to operate suicidally, may be capable of suicidal and - in hypoxic conditions - nonsuicidal operation. T. ammonificans and C. bicolor THI4s are thus candidate parts for rational redesign or directed evolution of efficient, nonsuicidal THI4s for use in crop improvement.


Assuntos
Tiamina/biossíntese , Tiazóis/metabolismo , Araceae/enzimologia , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Vias Biossintéticas , Escherichia coli/genética , Engenharia Metabólica/métodos , Mathanococcus/enzimologia , Plantas/metabolismo
2.
Antioxid Redox Signal ; 28(4): 311-323, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874062

RESUMO

AIMS: The transsulfuration pathway enzymes cystathionine beta-synthase (CBS) and cystathionine gamma-lyase are thought to be the major source of hydrogen sulfide (H2S). In this study, we assessed the role of CBS in H2S biogenesis. RESULTS: We show that despite discouraging enzyme kinetics of alternative H2S-producing reactions utilizing cysteine compared with the canonical condensation of serine and homocysteine, our simulations of substrate competitions at biologically relevant conditions suggest that cysteine is able to partially compete with serine on CBS, thus leading to generation of appreciable amounts of H2S. The leading H2S-producing reaction is condensation of cysteine with homocysteine, while cysteine desulfuration plays a dominant role when cysteine is more abundant than serine and homocysteine is limited. We found that the serine-to-cysteine ratio is the main determinant of CBS H2S productivity. Abundance of cysteine over serine, for example, in plasma, allowed for up to 43% of CBS activity being responsible for H2S production, while excess of serine typical for intracellular levels effectively limited such activity to less than 1.5%. CBS also produced lanthionine from serine and cysteine and a third of lanthionine coming from condensation of two cysteines contributed to the H2S pool. INNOVATION: Our study characterizes the H2S-producing potential of CBS under biologically relevant conditions and highlights the serine-to-cysteine ratio as the main determinant of H2S production by CBS in vivo. CONCLUSION: Our data clarify the function of CBS in H2S biogenesis and the role of thioethers as surrogate H2S markers. Antioxid. Redox Signal. 28, 311-323.


Assuntos
Biomarcadores/metabolismo , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfetos/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Animais , Biomarcadores/química , Catálise , Cistationina beta-Sintase/química , Cisteína/química , Haplorrinos , Homocisteína/química , Sulfeto de Hidrogênio/química , Cinética , Camundongos , Camundongos Knockout , Serina/química , Sulfetos/química , Enxofre/metabolismo
3.
J Nutr ; 147(9): 1658-1668, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794210

RESUMO

Background: An elevated circulating cystathionine concentration, which arises in part from insufficiencies of vitamin B-6, B-12, or folate, has been shown to be associated with cardiovascular disease (CVD) risk. Hydrogen sulfide (H2S) is a gasotransmitter involved in vasodilation, neuromodulation, and inflammation. Most endogenously produced H2S is formed by pyridoxal phosphate (PLP)-dependent enzymes by noncanonical reactions of the transsulfuration pathway that yield H2S concurrently form lanthionine and homolanthionine. Thus, plasma lanthionine and homolanthionine concentrations can provide relative information about H2S production in vivo.Objective: To determine the metabolic consequences of an elevated plasma cystathionine concentration in adults with stable angina pectoris (SAP), we conducted both targeted and untargeted metabolomic analyses.Methods: We conducted NMR and LC-mass spectrometry (MS) metabolomic analyses on a subset of 80 plasma samples from the Western Norway Coronary Angiography Cohort and selected, based on plasma cystathionine concentrations, a group with high cystathionine concentrations [1.32 ± 0.60 µmol/L (mean ± SD); n = 40] and a group with low cystathionine concentrations [0.137 ± 0.011 µmol/L (mean ± SD); n = 40]. Targeted and untargeted metabolomic analyses were performed and assessed with the use of Student's t tests corrected for multiple testing. Overall differences between the cystathionine groups were assessed by untargeted NMR and LC-MS metabolomic methods and evaluated by partial least squares discriminant analysis (PLS-DA) with significant discriminating metabolites identified with 99% confidence.Results: Subjects with high cystathionine concentrations had 75% higher plasma lanthionine concentrations (0.12 ± 0.044 µmol/L) than subjects with low cystathionine concentrations [0.032 ± 0.013 µmol/L (P < 0.001)]. Although plasma homolanthionine concentrations were notably higher than lanthionine concentrations, they were not different between the groups (P = 0.47). PLS-DA results showed that a high plasma cystathionine concentration in SAP was associated with higher glucose, branched-chain amino acids, and phenylalanine concentrations, lower kidney function, and lower glutathione and plasma PLP concentrations due to greater catabolism. The high-cystathionine group had a greater proportion of subjects in the postprandial state.Conclusion: These data suggest that metabolic perturbations consistent with higher CVD risk exist in SAP patients with elevated plasma cystathionine concentrations.


Assuntos
Angina Estável/etiologia , Cistationina/sangue , Redes e Vias Metabólicas , Alanina/análogos & derivados , Alanina/sangue , Aminoácidos de Cadeia Ramificada/sangue , Angina Estável/sangue , Glicemia/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Feminino , Glutationa/sangue , Homocisteína/sangue , Humanos , Sulfeto de Hidrogênio/sangue , Rim/metabolismo , Masculino , Espectrometria de Massas , Metaboloma , Pessoa de Meia-Idade , Estado Nutricional , Fenilalanina/sangue , Fosfato de Piridoxal/sangue , Risco , Sulfetos/sangue , Complexo Vitamínico B/sangue , Deficiência de Vitaminas do Complexo B/sangue , Deficiência de Vitaminas do Complexo B/complicações
4.
Biochimie ; 126: 21-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26765812

RESUMO

The transsulfuration pathway (TS) acts in sulfur amino acid metabolism by contributing to the regulation of cellular homocysteine, cysteine production, and the generation of H2S for signaling functions. Regulation of TS pathway kinetics involves stimulation of cystathionine ß-synthase (CBS) by S-adenosylmethionine (SAM) and oxidants such as H2O2, and by Michaelis-Menten principles whereby substrate concentrations affect reaction rates. Although pyridoxal phosphate (PLP) serves as coenzyme for both CBS and cystathionine γ-lyase (CSE), CSE exhibits much greater loss of activity than CBS during PLP insufficiency. Thus, cellular and plasma cystathionine concentrations increase in vitamin B6 deficiency mainly due to the bottleneck caused by reduced CSE activity. Because of the increase in cystathionine, the canonical production of cysteine (homocysteine â†’ cystathionine â†’ cysteine) is largely maintained even during vitamin B6 deficiency. Typical whole body transsulfuration flux in humans is 3-7 µmol/h per kg body weight. The in vivo kinetics of H2S production via side reactions of CBS and CSE in humans are unknown but they have been reported for cultured HepG2 cells. In these studies, cells exhibit a pronounced reduction in H2S production capacity and rates of lanthionine and homolanthionine synthesis in deficiency. In humans, plasma concentrations of lanthionine and homolanthionine exhibit little or no mean change due to 4-wk vitamin B6 restriction, nor do they respond to pyridoxine supplementation of subjects in chronically low-vitamin B6 status. Wide individual variation in responses of the H2S biomarkers to such perturbations of human vitamin B6 status suggests that the resulting modulation of H2S production may have physiological consequences in a subset of people. Supported by NIH grant DK072398. This paper refers to data from studies registered at clinicaltrials.gov as NCT01128244 and NCT00877812.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Estado Nutricional , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Animais , Ensaios Clínicos como Assunto , Feminino , Células Hep G2 , Humanos , Masculino
5.
Am J Clin Nutr ; 102(3): 616-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26201817

RESUMO

BACKGROUND: Low chronic vitamin B-6 status can occur in a subset of women who use oral contraceptives (OCs) with uncertain metabolic consequences. An insufficiency of cellular pyridoxal 5'-phosphate (PLP), which is the coenzyme form of vitamin B-6, may impair many metabolic processes including one-carbon and tryptophan metabolism. OBJECTIVE: We investigated the effects of vitamin B-6 supplementation on the in vivo kinetics of one-carbon metabolism and the concentration of one-carbon and tryptophan metabolites in vitamin B-6-deficient OC users. DESIGN: A primed, constant infusion of [(13)C5]methionine, [3-(13)C]serine, and [(2)H3]leucine was performed on 10 OC users (20-40 y old; plasma PLP concentrations <30 nmol/L) before and after 28 d of supplementation with 10 mg pyridoxine hydrochloric acid/d. In vivo fluxes of total homocysteine remethylation, the remethylation of homocysteine from serine, and rates of homocysteine and cystathionine production were assessed. Targeted metabolite profiling was performed, and data were analyzed by using orthogonal partial least-squares-discriminant analysis and paired t tests adjusted for multiple testing. RESULTS: Pyridoxine supplementation increased the mean ± SD plasma PLP concentration from 25.8 ± 3.6 to 143 ± 58 nmol/L (P < 0.001) and decreased the leucine concentration from 103 ± 17 to 90 ± 20 nmol/L (P = 0.007) and glycine concentration from 317 ± 63 to 267 ± 58 nmol/L (P = 0.03). Supplementation did not affect in vivo rates of homocysteine remethylation or the appearance of homocysteine and cystathionine. A multivariate analysis showed a clear overall effect on metabolite profiles resulting from supplementation. Leucine, glycine, choline, cysteine, glutathione, trimethylamine N-oxide, and the ratios glycine:serine, 3-hydroxykynurenine:kynurenine, 3-hydroxykynurenine:3-hydroxyanthranilic acid, and 3-hydroxykynurenine:anthranilic acid were significant discriminating variables. CONCLUSIONS: Consistent with previous vitamin B-6-restriction studies, fluxes of one-carbon metabolic processes exhibited little or no change after supplementation in low-vitamin B-6 subjects. In contrast, changes in the metabolic profiles after supplementation indicated perturbations in metabolism, suggesting functional vitamin B-6 deficiency. This study was registered at clinicaltrials.gov as NCT01128244.


Assuntos
Anticoncepcionais Orais/efeitos adversos , Piridoxina/administração & dosagem , Piridoxina/sangue , Triptofano/sangue , Deficiência de Vitamina B 6/sangue , Ácido 3-Hidroxiantranílico/metabolismo , Adulto , Biomarcadores/sangue , Carbono/metabolismo , Anticoncepcionais Orais/administração & dosagem , Cistationina/sangue , Suplementos Nutricionais , Feminino , Glicina/sangue , Homocisteína/sangue , Humanos , Cinurenina/análogos & derivados , Cinurenina/sangue , Leucina/sangue , Metionina/sangue , Metilaminas/sangue , Análise Multivariada , Fosfato de Piridoxal/sangue , Serina/sangue , Deficiência de Vitamina B 6/etiologia , Adulto Jovem
6.
J Nutr ; 146(4): 714-719, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26962179

RESUMO

BACKGROUND: Suboptimal vitamin B-6 status is associated with increased cardiovascular disease risk, although the mechanism is unknown. The synthesis of the vasodilator hydrogen sulfide occurs through side reactions of the transsulfuration enzymes cystathionine ß-synthase and cystathionine γ-lyase, with pyridoxal 5'-phosphate as a coenzyme. Two proposed hydrogen sulfide biomarkers, lanthionine and homolanthionine, are produced concurrently. OBJECTIVE: To determine whether hydrogen sulfide production is reduced by vitamin B-6 deficiency, we examined the relations between plasma concentrations of lanthionine and homolanthionine, along with other components of the transsulfuration pathway (homocysteine, cystathionine, and Cys), in a secondary analysis of samples from 2 vitamin B-6 restriction studies in healthy men and women. METHODS: Metabolite concentrations were measured in plasma from 23 healthy adults (12 men and 11 women) before and after 28-d controlled dietary vitamin B-6 restriction (0.37 ± 0.04 mg/d). Vitamin B-6 restriction effects on lanthionine and homolanthionine concentrations were assessed. Associations between hydrogen sulfide biomarkers, transsulfuration metabolites, and functional indicators of vitamin B-6 deficiency were analyzed by linear regression. RESULTS: Preprandial plasma lanthionine and homolanthionine concentrations ranged from 89.0 to 372 nmol/L and 5.75 to 32.3 nmol/L, respectively, in healthy adults. Mean lanthionine and homolanthionine concentrations were not affected by vitamin B-6 restriction (P < 0.66), with marked heterogeneity of individual responses. After restriction, homolanthionine was positively associated with functional indicators of vitamin B-6 deficiency, which differed from hypothesized negative associations. Plasma lanthionine was positively correlated with the concentration of its precursor, Cys, before (R2 = 0.36; P = 0.002) and after (R2 = 0.37; P = 0.002) restriction. Likewise, homolanthionine concentration was positively correlated with its precursor homocysteine, but only in vitamin B-6 adequacy (R2 = 0.41; P < 0.001). CONCLUSIONS: The resiliency of plasma lanthionine and homolanthionine concentrations after short-term vitamin B-6 restriction suggests a minimal effect of moderate vitamin B-6 deficiency on hydrogen sulfide production. Additional research is needed to better understand the metabolism and disposal of these biomarkers in humans. This study was registered at clinicaltrials.gov as NCT00877812.

7.
J Nutr ; 144(10): 1501-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25165392

RESUMO

BACKGROUND: Pyridoxal 5'-phosphate (PLP) functions as a coenzyme in many cellular processes including one-carbon metabolism and the interconversion and catabolism of amino acids. PLP-dependent enzymes, cystathionine ß-synthase and cystathionine γ-lyase, function in transsulfuration but also have been implicated in the production of the endogenous gaseous signaling molecule hydrogen sulfide (H2S) concurrent with the formation of the biomarkers lanthionine and homolanthionine. OBJECTIVE: Our objective was to determine if H2S production and concurrent biomarker production is affected by vitamin B-6 restriction in a cell culture model. METHODS: We used cultured human hepatoma cells and evaluated static intracellular profiles of amino acids and in vivo kinetics of H2S biomarker formation. Cells were cultured for 6 wk in media containing concentrations of pyridoxal that represented severe vitamin B-6 deficiency (15 nmol/L pyridoxal), marginal deficiency (56 nmol/L pyridoxal), adequacy (210 nmol/L pyridoxal), and standard medium formulation providing a supraphysiologic pyridoxal concentration (1800 nmol/L pyridoxal). RESULTS: Intracellular concentrations of lanthionine and homolanthionine in cells cultured at 15 nmol/L pyridoxal were 50% lower (P < 0.002) and 47% lower (P < 0.0255), respectively, than observed in cells cultured at 1800 nmol/L pyridoxal. Extracellular homocysteine and cysteine were 58% and 46% higher, respectively, in severely deficient cells than in adequate cells (P < 0.002). Fractional synthesis rates of lanthionine (P < 0.01) and homolanthionine (P < 0.006) were lower at 15 and 56 nmol/L pyridoxal than at both higher pyridoxal concentrations. The rate of homocysteine remethylation and the fractional rate of homocysteine production from methionine were not affected by vitamin B-6 restriction. In vitro studies of cell lysates using direct measurement of H2S also had a reduced extent of H2S production in the 2 lower vitamin B-6 conditions. CONCLUSION: In view of the physiologic roles of H2S, these results suggest a mechanism that may be involved in the association between human vitamin B-6 inadequacy and its effects on human health.


Assuntos
Biomarcadores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Deficiência de Vitamina B 6/fisiopatologia , Vitamina B 6/farmacologia , Alanina/análogos & derivados , Alanina/biossíntese , Carcinoma Hepatocelular/metabolismo , Cisteína/biossíntese , Células Hep G2 , Homocisteína/biossíntese , Humanos , Sulfeto de Hidrogênio/antagonistas & inibidores , Modelos Lineares , Neoplasias Hepáticas/metabolismo , Fosfato de Piridoxal/metabolismo , Sulfetos
8.
Am J Physiol Endocrinol Metab ; 307(1): E93-101, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24824655

RESUMO

Low vitamin B-6 nutritional status is associated with increased risk for cardiovascular disease and certain cancers. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in many cellular processes, including several reactions in one-carbon (1C) metabolism and the transsulfuration pathway of homocysteine catabolism. To assess the effect of vitamin B-6 deficiency on these processes and associated pathways, we conducted quantitative analysis of 1C metabolites including tetrahydrofolate species in HepG2 cells cultured in various concentrations of pyridoxal. These results were compared with predictions of a mathematical model of 1C metabolism simulating effects of vitamin B-6 deficiency. In cells cultured in vitamin B-6-deficient medium (25 or 35 nmol/l pyridoxal), we observed >200% higher concentrations of betaine (P < 0.05) and creatinine (P < 0.05) and >60% lower concentrations of creatine (P < 0.05) and 5,10-methenyltetrahydrofolate (P < 0.05) compared with cells cultured in medium containing intermediate (65 nmol/l) or the supraphysiological 2,015 nmol/l pyridoxal. Cystathionine, cysteine, glutathione, and cysteinylglycine, which are components of the transsulfuration pathway and subsequent reactions, exhibited greater concentrations at the two lower vitamin B-6 concentrations. Partial least squares discriminant analysis showed differences in overall profiles between cells cultured in 25 and 35 nmol/l pyridoxal vs. those in 65 and 2,015 nmol/l pyridoxal. Mathematical model predictions aligned with analytically derived results. These data reveal pronounced effects of vitamin B-6 deficiency on 1C-related metabolites, including previously unexpected secondary effects on creatine. These results complement metabolomic studies in humans demonstrating extended metabolic effects of vitamin B-6 insufficiency.


Assuntos
Carbono/metabolismo , Ácido Fólico/metabolismo , Metaboloma , Modelos Biológicos , Transdução de Sinais , Deficiência de Vitamina B 6/metabolismo , Simulação por Computador , Marcação de Genes , Células Hep G2 , Humanos
9.
J Nutr ; 143(11): 1719-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966327

RESUMO

Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (<0.35 mg/d). liquid chromatography-tandem mass spectrometry analysis of the compounds relevant to one-carbon metabolism showed that vitamin B-6 restriction yielded increased cystathionine (53% pre- and 76% postprandial; P < 0.0001) and serine (12% preprandial; P < 0.05), and lower creatine (40% pre- and postprandial; P < 0.0001), creatinine (9% postprandial; P < 0.05), and dimethylglycine (16% postprandial; P < 0.05) relative to the vitamin B-6-adequate state. In the tryptophan pathway, vitamin B-6 restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P < 0.01) and higher 3-hydroxykynurenine (39% pre- and 34% postprandial; P < 0.01). Multivariate ANOVA analysis showed a significant global effect of vitamin B-6 restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.


Assuntos
Triptofano/metabolismo , Deficiência de Vitamina B 6/sangue , Vitamina B 6/sangue , Adulto , Biomarcadores/sangue , Creatina/sangue , Cistationina/sangue , Feminino , Humanos , Inflamação/sangue , Ácido Cinurênico/sangue , Cinurenina/análogos & derivados , Cinurenina/sangue , Masculino , Análise Multivariada , Período Pós-Prandial , Fosfato de Piridoxal/sangue , Serina/sangue , Vitamina B 6/administração & dosagem , Adulto Jovem
10.
Biochem J ; 454(3): 533-42, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23834287

RESUMO

Genes specifying the thiamin monophosphate phosphatase and adenylated thiazole diphosphatase steps in fungal and plant thiamin biosynthesis remain unknown, as do genes for ThDP (thiamin diphosphate) hydrolysis in thiamin metabolism. A distinctive Nudix domain fused to Tnr3 (thiamin diphosphokinase) in Schizosaccharomyces pombe was evaluated as a candidate for these functions. Comparative genomic analysis predicted a role in thiamin metabolism, not biosynthesis, because free-standing homologues of this Nudix domain occur not only in fungi and plants, but also in proteobacteria (whose thiamin biosynthesis pathway has no adenylated thiazole or thiamin monophosphate hydrolysis steps) and animals (which do not make thiamin). Supporting this prediction, recombinant Tnr3 and its Saccharomyces cerevisiae, Arabidopsis and maize Nudix homologues lacked thiamin monophosphate phosphatase activity, but were active against ThDP, and up to 60-fold more active against diphosphates of the toxic thiamin degradation products oxy- and oxo-thiamin. Deleting the S. cerevisiae Nudix gene (YJR142W) lowered oxythiamin resistance, overexpressing it raised resistance, and expressing its plant or bacterial counterparts restored resistance to the YJR142W deletant. By converting the diphosphates of damaged forms of thiamin into monophosphates, the Tnr3 Nudix domain and its homologues can pre-empt the misincorporation of damaged diphosphates into ThDP-dependent enzymes, and the resulting toxicity.


Assuntos
Schizosaccharomyces/enzimologia , Tiamina Pirofosfato/metabolismo , Tiamina Trifosfato/metabolismo , Antifúngicos/farmacologia , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Farmacorresistência Fúngica , Deleção de Genes , Teste de Complementação Genética , Cinética , Oxitiamina/farmacologia , Filogenia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
11.
Am J Physiol Endocrinol Metab ; 304(4): E342-51, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23211517

RESUMO

Vitamin B-6 deficiency has been reported to alter n-6 and n-3 fatty acid profiles in plasma and tissue lipids; however, the mechanisms underlying such metabolic changes remain unclear. The objective of this study was to determine the effects of vitamin B-6 restriction on fatty acid profiles and fatty acid synthesis in HepG2 cells. Cells were cultured for 6 wk in media with four different vitamin B-6 concentrations (10, 20, 50, and 2,000 nM added pyridoxal, representing deficient, marginal, adequate, and supraphysiological conditions) that induced a range of steady-state cellular concentrations of pyridoxal phosphate. Total cellular lipid content was greatest in the deficient (10 nM pyridoxal) medium. The percentage of arachidonic acid and the ratio of arachidonic acid to linoleic acid in the total lipid fraction were ~15% lower in vitamin B-6-restricted cells, which suggests that vitamin B-6 restriction affects n-6 fatty acid interconversions. Metabolic flux studies indicated significantly lower fractional synthesis rate of oleic acid and arachidonic acid at 10, 20, and 50 nM pyridoxal, whereas that of eicosapentaenoic acid was lower in the cells cultured in 10 nM pyridoxal. Additionally, relative mRNA expressions of Δ5 and Δ6 desaturases were 40-50% lower in vitamin B-6-restricted cells. Overall, these findings suggest that vitamin B-6 restriction alters unsaturated fatty acid synthesis, particularly n-6 and n-3 polyunsaturated fatty acid synthesis. These results and observations of changes in human plasma fatty acid profiles caused by vitamin B-6 restriction suggest a mechanism by which vitamin B-6 inadequacy influences the cardiovascular risk.


Assuntos
Membrana Celular/metabolismo , Regulação para Baixo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Linoleoil-CoA Desaturase/metabolismo , Deficiência de Vitamina B 6/metabolismo , Carcinoma Hepatocelular/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Células Hep G2 , Humanos , Membranas Intracelulares/metabolismo , Cinética , Linoleoil-CoA Desaturase/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Concentração Osmolar , Piridoxal/metabolismo , Fosfato de Piridoxal/metabolismo , RNA Mensageiro/metabolismo
12.
J Nutr ; 142(10): 1791-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22955512

RESUMO

Previous animal studies showed that severe vitamin B-6 deficiency altered fatty acid profiles of tissue lipids, often with an increase of linoleic acid and a decrease of arachidonic acid. However, little is known about the extent to which vitamin B-6 deficiency affects human fatty acid profiles. The aim of this study was to determine the effects of marginal vitamin B-6 deficiency on fatty acid profiles in plasma, erythrocytes, and peripheral blood mononuclear cells (PBMC) of healthy adults fed a 28-d, low-vitamin B-6 diet. Healthy participants (n = 23) received a 2-d, controlled, vitamin B-6-adequate diet followed by a 28-d, vitamin B-6-restricted diet to induce a marginal deficiency. Plasma HDL and LDL cholesterol concentrations, FFA concentrations, and erythrocyte and PBMC membrane fatty acid compositions did not significantly change from baseline after the 28-d restriction. Plasma total arachidonic acid, EPA, and DHA concentrations decreased from (mean ± SD) 548 ± 96 to 490 ± 94 µmol/L, 37 ± 13 to 32 ± 13 µmol/L, and 121 ± 28 to 109 ± 28 µmol/L [positive false discovery rate (pFDR) adjusted P < 0.05], respectively. The total (n-6):(n-3) PUFA ratio in plasma exhibited a minor increase from 15.4 ± 2.8 to 16.6 ± 3.1 (pFDR adjusted P < 0.05). These data indicate that short-term vitamin B-6 restriction decreases plasma (n-3) and (n-6) PUFA concentrations and tends to increase the plasma (n-6):(n-3) PUFA ratio. Such changes in blood lipids may be associated with the elevated risk of cardiovascular disease in vitamin B-6 insufficiency.


Assuntos
Ácido Araquidônico/sangue , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Ácidos Graxos Ômega-6/sangue , Deficiência de Vitamina B 6/fisiopatologia , Adulto , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta , Membrana Eritrocítica/química , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Leucócitos Mononucleares/química , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Inquéritos e Questionários , Vitamina B 6/administração & dosagem , Deficiência de Vitamina B 6/sangue , Adulto Jovem
13.
J Nutr ; 141(5): 835-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21430249

RESUMO

Methionine is the precursor for S-adenosylmethionine (SAM), the major 1-carbon donor involved in >100 transmethylation reactions. Homocysteine produced from SAM must be metabolized either by remethylation for recycling of methionine or transsulfuration to form cystathionine and then cysteine. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in enzymes involved in transsulfuration as well as for primary acquisition of 1-carbon units used for remethylation and other phases of 1-carbon metabolism. Because the intake of vitamin B-6 is frequently low in humans and metabolic consequences of inadequacy may be amplified in the postprandial state, we aimed to determine the effects of marginal vitamin B-6 deficiency on the postprandial rates of remethylation, transmethylation, overall transsulfuration, and cystathionine synthesis. Healthy, young adults (4 male, 5 female; 20-35 y) received a primed, constant infusion of [1-(13)C]methionine, [methyl-(2)H(3)]methionine, and [5,5,5-(2)H(3)]leucine to quantify in vivo kinetics at normal vitamin B-6 status and after a 28-d dietary vitamin B-6 restriction. Vitamin B-6 restriction lowered the plasma PLP concentration from 49 ± 4 nmol/L (mean ± SEM) to 19 ± 2 nmol/L (P < 0.0001). Mean remethylation, transsulfuration, and transmethylation rates did not change in response to vitamin B-6 restriction; however, the responses to vitamin B-6 restriction varied greatly among individuals. The plasma cystathionine concentration increased from 142 ± 8 to 236 ± 9 nmol/L (P < 0.001), whereas the fractional cystathionine synthesis rate increased by a mean of 12% in 8 of 9 participants. Interrelationships among plasma concentrations of glycine and cystathionine and kinetic results suggest that individual variability occurs in normal postprandial 1-carbon metabolism and in the response to vitamin B-6 restriction.


Assuntos
Cistationina/metabolismo , Metionina/metabolismo , Período Pós-Prandial , Deficiência de Vitamina B 6/metabolismo , Adulto , Testes Respiratórios , Isótopos de Carbono , Cistationina/sangue , Metilação de DNA , Deutério , Dieta , Feminino , Humanos , Cinética , Leucina , Masculino , Metilação , Monócitos/metabolismo , Fosfato de Piridoxal/sangue , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Vitamina B 6/administração & dosagem , Deficiência de Vitamina B 6/sangue , Adulto Jovem
14.
J Nutr ; 139(3): 452-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19158217

RESUMO

Glycine is a precursor of purines, protein, glutathione, and 1-carbon units as 5,10-methylenetetrahydrofolate. Glycine decarboxylation through the glycine cleavage system (GCS) and glycine-serine transformation by serine hydroxymethyltransferase (SHMT) require pyridoxal 5'-phosphate (PLP; active form of vitamin B-6) as a coenzyme. The intake of vitamin B-6 is frequently low in humans. Therefore, we determined the effects of vitamin B-6 restriction on whole-body glycine flux, the rate of glycine decarboxylation, glycine-to-serine conversion, use of glycine carbons in nucleoside synthesis, and other aspects of 1-carbon metabolism. We used a primed, constant infusion of [1,2-(13)C(2)]glycine and [5,5,5-(2)H(3)]leucine to quantify in vivo kinetics in healthy adults (7 males, 6 females; 20-39 y) of normal vitamin B-6 status or marginal vitamin B-6 deficiency. Vitamin B-6 restriction lowered the plasma PLP concentration from 55 +/- 4 nmol/L (mean +/- SEM) to 23 +/- 1 nmol/L (P < 0.0001), which is consistent with marginal deficiency, whereas the plasma glycine concentration increased (P < 0.01). SHMT-mediated conversion of glycine to serine increased from 182 +/- 7 to 205 +/- 9 micromol x kg(-1) x h(-1) (P < 0.05), but serine production using a GCS-derived 1-carbon unit (93 +/- 9 vs. 91 +/- 6 micromol x kg(-1) x h(-1)) and glycine cleavage (163 +/- 11 vs. 151 +/- 8 micromol x kg(-1) x h(-1)) were not changed by vitamin B-6 restriction. The GCS produced 1-carbon units at a rate (approximately 140-170 micromol x kg(-1) x h(-1)) that greatly exceeds the demand for remethylation and transmethylation processes (approximately 4-7 micromol x kg(-1) x h(-1)). We conclude that the in vivo GCS and SHMT reactions are quite resilient to the effects of marginal vitamin B-6 deficiency, presumably through a compensatory effect of increasing substrate concentration.


Assuntos
Cistationina/sangue , Glicina/sangue , Glicina/metabolismo , Deficiência de Vitamina B 6/sangue , Vitamina B 6/farmacologia , Adulto , Dieta , Feminino , Humanos , Masculino , Serina/sangue , Serina/metabolismo , Tetra-Hidrofolatos/metabolismo , Deficiência de Vitamina B 6/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...