Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753705

RESUMO

Emerging technologies focused on the detection and quantification of circulating tumor DNA (ctDNA) in blood show extensive potential for managing patient treatment decisions, informing risk of recurrence, and predicting response to therapy. Currently available tissue-informed approaches are often limited by the need for additional sequencing of normal tissue or peripheral mononuclear cells to identify non-tumor-derived alterations while tissue-naïve approaches are often limited in sensitivity. Here we present the analytical validation for a novel ctDNA monitoring assay, FoundationOne®Tracker. The assay utilizes somatic alterations from comprehensive genomic profiling (CGP) of tumor tissue. A novel algorithm identifies monitorable alterations with a high probability of being somatic and computationally filters non-tumor-derived alterations such as germline or clonal hematopoiesis variants without the need for sequencing of additional samples. Monitorable alterations identified from tissue CGP are then quantified in blood using a multiplex polymerase chain reaction assay based on the validated SignateraTM assay. The analytical specificity of the plasma workflow is shown to be 99.6% at the sample level. Analytical sensitivity is shown to be >97.3% at ≥5 mean tumor molecules per mL of plasma (MTM/mL) when tested with the most conservative configuration using only two monitorable alterations. The assay also demonstrates high analytical accuracy when compared to liquid biopsy-based CGP as well as high qualitative (measured 100% PPA) and quantitative precision (<11.2% coefficient of variation).


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasias/genética , Neoplasias/sangue , Neoplasias/diagnóstico , Genômica/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Sensibilidade e Especificidade , Algoritmos , Reação em Cadeia da Polimerase Multiplex/métodos , Biópsia Líquida/métodos
2.
Mol Oncol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037739

RESUMO

Several studies have demonstrated the prognostic value of circulating tumor DNA (ctDNA); however, the correlation of mean tumor molecules (MTM)/ml of plasma and mean variant allele frequency (mVAF; %) with clinical parameters is yet to be understood. In this study, we analyzed ctDNA data in a pan-cancer cohort of 23 543 patients who had ctDNA testing performed using a personalized, tumor-informed assay (Signatera™, mPCR-NGS assay). For ctDNA-positive patients, the correlation between MTM/ml and mVAF was examined. Two subanalyses were performed: (a) to establish the association of ctDNA with tumor volume and (b) to assess the correlation between ctDNA dynamics and patient outcomes. On a global cohort, a positive correlation between MTM/ml and mVAF was observed. Among 18 426 patients with longitudinal ctDNA measurements, 13.3% had discordant trajectories between MTM/ml and mVAF at subsequent time points. In metastatic patients receiving immunotherapy (N = 51), changes in ctDNA levels expressed both in MTM/ml and mVAF showed a statistically significant association with progression-free survival; however, the correlation with MTM/ml was numerically stronger.

3.
J Clin Oncol ; 37(18): 1547-1557, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31059311

RESUMO

PURPOSE: Novel sensitive methods for early detection of relapse and for monitoring therapeutic efficacy may have a huge impact on risk stratification, treatment, and ultimately outcome for patients with bladder cancer. We addressed the prognostic and predictive impact of ultra-deep sequencing of cell-free DNA in patients before and after cystectomy and during chemotherapy. PATIENTS AND METHODS: We included 68 patients with localized advanced bladder cancer. Patient-specific somatic mutations, identified by whole-exome sequencing, were used to assess circulating tumor DNA (ctDNA) by ultra-deep sequencing (median, 105,000×) of plasma DNA. Plasma samples (n = 656) were procured at diagnosis, during chemotherapy, before cystectomy, and during surveillance. Expression profiling was performed for tumor subtype and immune signature analyses. RESULTS: Presence of ctDNA was highly prognostic at diagnosis before chemotherapy (hazard ratio, 29.1; P = .001). After cystectomy, ctDNA analysis correctly identified all patients with metastatic relapse during disease monitoring (100% sensitivity, 98% specificity). A median lead time over radiographic imaging of 96 days was observed. In addition, for high-risk patients (ctDNA positive before or during treatment), the dynamics of ctDNA during chemotherapy was associated with disease recurrence (P = .023), whereas pathologic downstaging was not. Analysis of tumor-centric biomarkers showed that mutational processes (signature 5) were associated with pathologic downstaging (P = .024); however, no significant correlation for tumor subtypes, DNA damage response mutations, and other biomarkers was observed. Our results suggest that ctDNA analysis is better associated with treatment efficacy compared with other available methods. CONCLUSION: ctDNA assessment for early risk stratification, therapy monitoring, and early relapse detection in bladder cancer is feasible and provides a basis for clinical studies that evaluate early therapeutic interventions.


Assuntos
Ácidos Nucleicos Livres/sangue , Detecção Precoce de Câncer , Feminino , Humanos , Estudos Longitudinais , Masculino , Metástase Neoplásica , Recidiva Local de Neoplasia , Prognóstico , Recidiva , Neoplasias da Bexiga Urinária/patologia
4.
Transplantation ; 103(12): 2657-2665, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30801536

RESUMO

BACKGROUND: Early detection of rejection in kidney transplant recipients holds the promise to improve clinical outcomes. Development and implementation of more accurate, noninvasive methods to detect allograft rejection remain an ongoing challenge. The limitations of existing allograft surveillance methods present an opportunity for donor-derived cell-free DNA (dd-cfDNA), which can accurately and rapidly differentiate patients with allograft rejection from patients with stable organ function. METHODS: This study evaluated the analytical performance of a massively multiplexed polymerase chain reaction assay that targets 13 962 single-nucleotide polymorphisms, characterized and validated using 66 unique samples with 1064 replicates, including cell line-derived reference samples, plasma-derived mixtures, and transplant patient samples. The dd-cfDNA fraction was quantified in both related and unrelated donor-recipient pairs. RESULTS: The dd-cfDNA assay showed a limit of blank of 0.11%, a limit of detection and limit of quantitation of 0.15% for unrelated donors, and limit of blank of 0.23%, a limit of detection and limit of quantitation of 0.29% for related donors. All other metrics (linearity, accuracy, and precision) were observed to be equivalent between unrelated and related donors. The measurement precision of coefficient of variation was 1.8% (repeatability, 0.6% dd-cfDNA) and was <5% for all the different reproducibility measures. CONCLUSIONS: This study validates the performance of a single-nucleotide polymorphism-based massively multiplexed polymerase chain reaction assay to detect the dd-cfDNA fraction with improved precision over currently available tests, regardless of donor-recipient relationships.


Assuntos
Ácidos Nucleicos Livres/genética , Rejeição de Enxerto/genética , Transplante de Rim , Polimorfismo de Nucleotídeo Único , Doadores de Tecidos , Transplantados , Aloenxertos , Biomarcadores/sangue , Ácidos Nucleicos Livres/sangue , Feminino , Rejeição de Enxerto/sangue , Rejeição de Enxerto/diagnóstico , Humanos , Masculino , Reprodutibilidade dos Testes
5.
Mol Cell Biol ; 34(12): 2350-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24732797

RESUMO

The RASSF1A gene is one of the most frequently inactivated genes in over 30 different types of cancers (H. Donninger, M. D. Vos, and G. J. Clark, J. Cell Sci. 120:3163-3172, 2007, http://dx.doi.org/10.1242/jcs.010389). Despite the prevalence of RASSF1A silencing in human cancer, the mechanism by which RASSF1A functions as a tumor suppressor is not well understood. Characterization of the consequences of RASSF1A loss on epithelial cell proliferation revealed that RASSF1A expression suppresses both microRNA 21 (miR-21) expression and extracellular signal-regulated kinase 1/2 (ERK1/2) activation. The mechanism of the former is through restraint of SCF(ßTrCP)-dependent destruction of the repressor element 1 silencing transcription factor (REST) tumor suppressor and consequent inhibition of miR-21 promoter activation. The mechanism of the latter is through physical sequestration of MST2, which results in accumulation of inactivating S259 phosphorylation of RAF1. Whether or not inactivation of these RASSF1A regulatory relationships can unleash enhanced proliferative capacity is dependent upon the coupling of SCF(ßTrCP) and miR-21 to suppression of SKP2 protein translation and stability. Airway epithelial cultures retain this coupling and therefore respond to RASSF1A inactivation by p27-dependent cell cycle arrest. In contrast, colonic crypt-derived epithelial cells have uncoupled SCF(ßTrCP) from SKP2 and respond to RASSF1A inactivation by enhanced proliferation rates. These observations help account for context-specific molecular etiology of oncogenic transformation and suggest intervention strategies for recently developed SKP2 inhibitors.


Assuntos
Ciclo Celular/genética , Genes Supressores de Tumor , Oncogenes , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , MicroRNAs/metabolismo , Dados de Sequência Molecular , Proteínas Repressoras/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo
6.
Mol Cell ; 41(4): 458-70, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329883

RESUMO

The innate immune-signaling kinase, TBK1, couples pathogen surveillance to induction of host defense mechanisms. Pathological activation of TBK1 in cancer can overcome programmed cell death cues, enabling cells to survive oncogenic stress. The mechanistic basis of TBK1 prosurvival signaling, however, has been enigmatic. Here, we show that TBK1 directly activates AKT by phosphorylation of the canonical activation loop and hydrophobic motif sites independently of PDK1 and mTORC2. Upon mitogen stimulation, triggering of the innate immune response, re-exposure to glucose, or oncogene activation, TBK1 is recruited to the exocyst, where it activates AKT. In cells lacking TBK1, insulin activates AKT normally, but AKT activation by exocyst-dependent mechanisms is impaired. Discovery and characterization of a 6-aminopyrazolopyrimidine derivative, as a selective low-nanomolar TBK1 inhibitor, indicates that this regulatory arm can be pharmacologically perturbed independently of canonical PI3K/PDK1 signaling. Thus, AKT is a direct TBK1 substrate that connects TBK1 to prosurvival signaling.


Assuntos
Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Transformação Celular Neoplásica , Células Cultivadas , Células HCT116 , Humanos , Imunidade Inata , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transfecção
7.
Cell ; 144(2): 253-67, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21241894

RESUMO

The study of macroautophagy in mammalian cells has described induction, vesicle nucleation, and membrane elongation complexes as key signaling intermediates driving autophagosome biogenesis. How these components are recruited to nascent autophagosomes is poorly understood, and although much is known about signaling mechanisms that restrain autophagy, the nature of positive inductive signals that can promote autophagy remain cryptic. We find that the Ras-like small G protein, RalB, is localized to nascent autophagosomes and is activated on nutrient deprivation. RalB and its effector Exo84 are required for nutrient starvation-induced autophagocytosis, and RalB activation is sufficient to promote autophagosome formation. Through direct binding to Exo84, RalB induces the assembly of catalytically active ULK1 and Beclin1-VPS34 complexes on the exocyst, which are required for isolation membrane formation and maturation. Thus, RalB signaling is a primary adaptive response to nutrient limitation that directly engages autophagocytosis through mobilization of the core vesicle nucleation machinery.


Assuntos
Autofagia , Células Epiteliais/patologia , Fagossomos/metabolismo , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/microbiologia , Humanos , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Proteínas de Transporte Vesicular/metabolismo
8.
Mol Cell Biol ; 28(10): 3190-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18347058

RESUMO

Multiple molecular lesions in human cancers directly collaborate to deregulate proliferation and suppress apoptosis to promote tumorigenesis. The candidate tumor suppressor RASSF1A is commonly inactivated in a broad spectrum of human tumors and has been implicated as a pivotal gatekeeper of cell cycle progression. However, a mechanistic account of the role of RASSF1A gene inactivation in tumor initiation is lacking. Here we have employed loss-of-function analysis in human epithelial cells for a detailed investigation of the contribution of RASSF1 to cell cycle progression. We found that RASSF1A has dual opposing regulatory connections to G(1)/S phase cell cycle transit. RASSF1A associates with the Ewing sarcoma breakpoint protein, EWS, to limit accumulation of cyclin D1 and restrict exit from G(1). Surprisingly, we found that RASSF1A is also required to restrict SCF(betaTrCP) activity to allow G/S phase transition. This restriction is required for accumulation of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 and the concomitant block of APC/C-dependent cyclin A turnover. The consequence of this relationship is inhibition of cell cycle progression in normal epithelial cells upon RASSF1A depletion despite elevated cyclin D1 concentrations. Progression to tumorigenicity upon RASSF1A gene inactivation should therefore require collaborating genetic aberrations that bypass the consequences of impaired APC/C regulation at the G(1)/S phase cell cycle transition.


Assuntos
Ciclo Celular/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Primers do DNA/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fase G1 , Células HeLa , Humanos , RNA Interferente Pequeno/genética , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fase S , Transfecção , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Contendo Repetições de beta-Transducina/antagonistas & inibidores , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
9.
Biochemistry ; 46(25): 7572-80, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17536839

RESUMO

Oligonucleotides containing locked nucleic acid bases (LNAs) have increased affinity for complementary DNA sequences. We hypothesized that enhanced affinity might allow LNAs to recognize chromosomal DNA inside human cells and inhibit gene expression. To test this hypothesis, we synthesized antigene LNAs (agLNAs) complementary to sequences within the promoters of progesterone receptor (PR) and androgen receptor (AR). We observed inhibition of AR and PR expression by agLNAs but not by analogous oligomers containing 2'-methoxyethyl bases or noncomplementary LNAs. Inhibition was dose dependent and exhibited IC50 values of <10 nM. Efficient inhibition depended on the length of the agLNA, the location of LNA bases, the number of LNA substitutions, and the location of the target sequence within the targeted promoter. LNAs targeting sequences at or near transcription start sites yielded better inhibition than LNAs targeting transcription factor binding sites or an inverted repeat. These results demonstrate that agLNAs can recognize chromosomal target sequences and efficiently block gene expression. agLNAs could be used for gene silencing, as cellular probes for chromosome structure, and therapeutic applications.


Assuntos
DNA/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacologia , Antagonistas de Receptores de Andrógenos , Sequência de Bases , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromossomos/química , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Estrutura Molecular , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Regiões Promotoras Genéticas , Receptores Androgênicos/genética , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção
10.
Nat Chem Biol ; 3(3): 166-73, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17259978

RESUMO

The ability to selectively activate or inhibit gene expression is fundamental to understanding complex cellular systems and developing therapeutics. Recent studies have demonstrated that duplex RNAs complementary to promoters within chromosomal DNA are potent gene silencing agents in mammalian cells. Here we report that chromosome-targeted RNAs also activate gene expression. We have identified multiple duplex RNAs complementary to the progesterone receptor (PR) promoter that increase expression of PR protein and RNA after transfection into cultured T47D or MCF7 human breast cancer cells. Upregulation of PR protein reduced expression of the downstream gene encoding cyclooygenase 2 but did not change concentrations of estrogen receptor, which demonstrates that activating RNAs can predictably manipulate physiologically relevant cellular pathways. Activation decreased over time and was sequence specific. Chromatin immunoprecipitation assays indicated that activation is accompanied by reduced acetylation at histones H3K9 and H3K14 and by increased di- and trimethylation at histone H3K4. These data show that, like proteins, hormones and small molecules, small duplex RNAs interact at promoters and can activate or repress gene expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas/genética , RNA/fisiologia , Western Blotting , Linhagem Celular Tumoral , Cromatina/metabolismo , Desoxiadenosinas/farmacologia , Inibidores Enzimáticos/farmacologia , Histonas/genética , Histonas/fisiologia , Hormônios/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Imunoprecipitação , Interleucina-1beta/farmacologia , Dados de Sequência Molecular , Ácidos Nucleicos Peptídicos/genética , RNA de Cadeia Dupla/genética , Receptores de Progesterona/biossíntese , Receptores de Progesterona/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tionucleosídeos/farmacologia , Regulação para Cima/genética
11.
Nat Struct Mol Biol ; 13(9): 787-92, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16936728

RESUMO

Duplex RNAs complementary to messenger RNA inhibit translation in mammalian cells by RNA interference (RNAi). Studies have reported that RNAs complementary to promoter DNA also inhibit gene expression. Here we show that the human homologs of Argonaute-1 (AGO1) and Argonaute-2 (AGO2) link the silencing pathways that target mRNA with pathways mediating recognition of DNA. We find that synthetic antigene RNAs (agRNAs) complementary to transcription start sites or more upstream regions of gene promoters inhibit gene transcription. This silencing occurs in the nucleus, requires high promoter activity and does not necessarily require histone modification. AGO1 and AGO2 associate with promoter DNA in cells treated with agRNAs, and inhibiting expression of AGO1 or AGO2 reverses transcriptional and post-transcriptional silencing. Our data indicate key linkages and important mechanistic distinctions between transcriptional and post-transcriptional silencing pathways in mammalian cells.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Interferência de RNA , Proteínas Argonautas , DNA/metabolismo , Fator de Iniciação 2 em Eucariotos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Antissenso/metabolismo , RNA Complementar/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Progesterona/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Células Tumorais Cultivadas
12.
J Neurooncol ; 76(3): 239-48, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16234985

RESUMO

Invasion of glioma cells involves the attachment of invading tumor cells to extracellular matrix (ECM), disruption of ECM components, and subsequent cell penetration into adjacent brain structures. Discoidin domain receptor 1 (DDR1) tyrosine kinases constitute a novel family of receptors characterized by a unique structure in the ectodomain (discoidin-I domain). These cell surface receptors bind to several collagens and facilitate cell adhesion. Little is known about DDR1 expression and function in glioblastoma multiforme. In this study we demonstrate that DDR1 is overexpressed in glioma tissues using cDNA arrays, immunohistochemistry and Western blot analysis. Functional comparison of two splice variants of DDR1 (DDR1a and DDR1b) reveal novel differences in cell based glioma models. Overexpression of either DDR1a or DDR1b caused increased cell attachment. However, glioma cells overexpressing DDR1a display enhanced invasion and migration. We also detect increased levels of matrix metalloproteinase-2 in DDR1a overexpressing cells as measured by zymography. Inhibition of MMP activity using MMP inhibitor suppressed DDR1a stimulated cell-invasion. Similarly, an antibody against DDR1 reduced DDR1a mediated invasion as well as the enhanced adhesion of DDR1a and DDR1b overexpressing cells. These results suggest that DDR1a plays a critical role in inducing tumor cell adhesion and invasion, and this invasive phenotype is caused by activation of matrix metalloproteinase-2.


Assuntos
Neoplasias Encefálicas/patologia , Adesão Celular/fisiologia , Glioma/patologia , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Western Blotting , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Receptores com Domínio Discoidina , Ativação Enzimática/fisiologia , Glioma/metabolismo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/metabolismo , Transfecção
13.
Nat Chem Biol ; 1(4): 210-5, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16408037

RESUMO

Synthetic molecules that recognize specific sequences within cellular DNA are potentially powerful tools for investigating chromosome structure and function. Here, we designed antigene peptide nucleic acids (agPNAs) to target the transcriptional start sites for the human progesterone receptor B (hPR-B) and A (hPR-A) isoforms at sequences predicted to be single-stranded within the open complex of chromosomal DNA. We found that the agPNAs were potent inhibitors of transcription, showing for the first time that synthetic molecules can recognize transcription start sites inside cells. Breast cancer cells treated with agPNAs showed marked changes in morphology and an unexpected relationship between the strictly regulated levels of hPR-B and hPR-A. We confirmed these phenotypes using siRNAs and antisense PNAs, demonstrating the power of combining antigene and antisense strategies for gene silencing. agPNAs provide a general approach for controlling transcription initiation and a distinct option for target validation and therapeutic development.


Assuntos
DNA/metabolismo , Ácidos Nucleicos Peptídicos/farmacologia , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/efeitos dos fármacos , Cromossomos Humanos , Proteínas do Citoesqueleto , Inativação Gênica , Humanos , Modelos Moleculares , Ácidos Nucleicos Peptídicos/metabolismo , Fosfoproteínas/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores de Progesterona/metabolismo
14.
Nat Chem Biol ; 1(4): 216-22, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16408038

RESUMO

Transcription start sites are critical switches for converting recognition of chromosomal DNA into active synthesis of RNA. Their functional importance suggests that they may be ideal targets for regulating gene expression. Here, we report potent inhibition of gene expression by antigene RNAs (agRNAs) complementary to transcription start sites within human chromosomal DNA. Silencing does not require methylation of DNA and differs from all known mechanisms for inhibiting transcription. agRNAs overlap DNA sequences within the open complex formed by RNA polymerase, and silencing is acutely sensitive to single base shifts. agRNAs effectively silence both TATA-less and TATA-box-containing promoters. Transcription start sites occur within every gene, providing predictable targets for agRNAs. Potent inhibition of multiple genes suggests that agRNAs may represent a natural mechanism for controlling transcription, may complement siRNAs and miRNAs that target mRNA, and will be valuable agents for silencing gene expression.


Assuntos
Cromossomos Humanos , DNA/antagonistas & inibidores , DNA/metabolismo , Regulação da Expressão Gênica , RNA Interferente Pequeno/metabolismo , Sítio de Iniciação de Transcrição/fisiologia , Sequência de Bases , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Dados de Sequência Molecular , RNA Interferente Pequeno/farmacologia , Sítio de Iniciação de Transcrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...