Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 116(7): 615-630, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37138159

RESUMO

Lysinibacillus is a bacterial genus that has generated recent interest for its biotechnological potential in agriculture. Strains belonging to this group are recognized for their mosquitocidal and bioremediation activity. However, in recent years some reports indicate its importance as plant growth promoting rhizobacteria (PGPR). This research sought to provide evidence of the PGP activity of Lysinibacillus spp. and the role of the indole-3-acetic acid (IAA) production associated with this activity. Twelve Lysinibacillus spp. strains were evaluated under greenhouse conditions, six of which increased the biomass and root architecture of corn plants. In most cases, growth stimulation was evident at 108 CFU/mL inoculum concentration. All strains produced IAA with high variation between them (20-70 µg/mL). The bioinformatic identification of predicted genes associated with IAA production allowed the detection of the indole pyruvic acid pathway to synthesize IAA in all strains; additionally, genes for a tryptamine pathway were detected in two strains. Extracellular filtrates from all strain's cultures increased the corn coleoptile length in an IAA-similar concentration pattern, which demonstrates the filtrates had an auxin-like effect on plant tissue. Five of the six strains that previously showed PGPR activity in corn also promoted the growth of Arabidopsis thaliana (col 0). These strains induced changes in root architecture of Arabidopsis mutant plants (aux1-7/axr4-2), the partial reversion of mutant phenotype indicated the role of IAA on plant growth. This work provided solid evidence of the association of Lysinibacillus spp. IAA production with their PGP activity, which constitutes a new approach for this genus. These elements contribute to the biotechnological exploration of this bacterial genus for agricultural biotechnology.


Assuntos
Arabidopsis , Bacillaceae , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Bactérias/metabolismo , Bacillaceae/genética , Bacillaceae/metabolismo , Arabidopsis/metabolismo , Plantas/metabolismo , Raízes de Plantas/microbiologia
2.
Microbiome ; 7(1): 114, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412927

RESUMO

BACKGROUND: Modern crop varieties are typically cultivated in agriculturally well-managed soils far from the centers of origin of their wild relatives. How this habitat expansion impacted plant microbiome assembly is not well understood. RESULTS: Here, we investigated if the transition from a native to an agricultural soil affected rhizobacterial community assembly of wild and modern common bean (Phaseolus vulgaris) and if this led to a depletion of rhizobacterial diversity. The impact of the bean genotype on rhizobacterial assembly was more prominent in the agricultural soil than in the native soil. Although only 113 operational taxonomic units (OTUs) out of a total of 15,925 were shared by all eight bean accessions grown in native and agricultural soils, this core microbiome represented a large fraction (25.9%) of all sequence reads. More OTUs were exclusively found in the rhizosphere of common bean in the agricultural soil as compared to the native soil and in the rhizosphere of modern bean accessions as compared to wild accessions. Co-occurrence analyses further showed a reduction in complexity of the interactions in the bean rhizosphere microbiome in the agricultural soil as compared to the native soil. CONCLUSIONS: Collectively, these results suggest that habitat expansion of common bean from its native soil environment to an agricultural context had an unexpected overall positive effect on rhizobacterial diversity and led to a stronger bean genotype-dependent effect on rhizosphere microbiome assembly.


Assuntos
Bactérias/isolamento & purificação , Domesticação , Microbiota , Phaseolus/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Colômbia , Rizosfera , Solo/química
3.
ISME J ; 11(10): 2244-2257, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28585939

RESUMO

Plant domestication was a pivotal accomplishment in human history, but also led to a reduction in genetic diversity of crop species compared to their wild ancestors. How this reduced genetic diversity affected plant-microbe interactions belowground is largely unknown. Here, we investigated the genetic relatedness, root phenotypic traits and rhizobacterial community composition of modern and wild accessions of common bean (Phaseolus vulgaris) grown in agricultural soil from the highlands of Colombia, one of the centers of common bean diversification. Diversity Array Technology-based genotyping and phenotyping of local common bean accessions showed significant genetic and root architectural differences between wild and modern accessions, with a higher specific root length for the wild accessions. Canonical Correspondence Analysis indicated that the divergence in rhizobacterial community composition between wild and modern bean accessions is associated with differences in specific root length. Along the bean genotypic trajectory, going from wild to modern, we observed a gradual decrease in relative abundance of Bacteroidetes, mainly Chitinophagaceae and Cytophagaceae, and an increase in relative abundance of Actinobacteria and Proteobacteria, in particular Nocardioidaceae and Rhizobiaceae, respectively. Collectively, these results establish a link between common bean domestication, specific root morphological traits and rhizobacterial community assembly.


Assuntos
Microbiota , Phaseolus/microbiologia , Variação Genética , Humanos , Raízes de Plantas/microbiologia , Rizosfera
4.
J Nematol ; 42(4): 313-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22736864

RESUMO

The objective of this work was to isolate and identify fungi associated with R. reniformis in cotton roots. Soil samples were collected in cotton fields naturally infested with R. reniformis and from cotton stock plants cultured in the greenhouse. Nematodes extracted from the soil were observed under the stereoscope, and discolored eggs and vermiform stages colonized with mycelia were cultured on 1.5% water agar supplemented with antibiotics, and incubated at 27°C. Identification of the nematophagous fungi was based on the morphological characters, and the ITS regions and 5.8S rDNA amplified by PCR using the primers ITS1 and ITS4. The parasitism percentage on vermiform nematodes from greenhouse samples was 21.2%, and the percentages from cotton fields in Limestone, Henry, and Baldwin counties in Alabama were 3%, 23.2%, and 5.6%, respectively. A total of 12 fungi were identified from R. reniformis vermiform stages and eggs. The most frequently isolated fungi were Arthrobotrys dactyloides (46%) and Paecilomyces lilacinus (14%), followed by Phoma exigua (4.8%), Penicillium waksmanii and Dactylaria brochophaga (3.6%), Aspergillus glaucus group (2.4%). Cladosporium herbarum, Cladosporium cladiosporioides, Fusarium oxysporum, Torula herbarum, Aspergillus fumigatus, and an unidentified basidiomycete were less frequent (1.2%). A high percentage (16.8%) of fungi from colonized nematodes was not cultivable on our media. Out of those 12 fungi, only four have been previously reported as nematophagous fungi: three isolates of Arthrobotrys dactyloides, and one isolate of Dactylaria brochopaga, Paecilomyces lilacinus, and Fusarium oxysporum. Molecular identification of Arthrobotrys dactyloides and Dactylaria brochopaga was consistent with the morphological identification, placing these two fungi in the new genus Drechslerella as proposed in the new Orbilaceae classification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...