Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian Spine J ; 12(2): 256-262, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29713406

RESUMO

STUDY DESIGN: Retrospective comparative clinical study. PURPOSE: This study aimed to assess paraspinal muscle atrophy in patients who underwent minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) and unilateral pedicle screw fixation using a novel contralateral intact muscle-controlled model. OVERVIEW OF LITERATURE: The increased incidence of paravertebral lumbar muscle injuries after open techniques has raised the importance of implementing minimally invasive spine surgical techniques using tubular retractors and minimally invasive screw placement. The functional cross-sectional area (FCSA) represents the lean muscle mass; furthermore, FCSA is a useful marker of the contractile ability of a muscle following a spine surgery. However, the benefits of unilateral fixation and MI-TLIF on paraspinal muscles have not been defined. METHODS: We performed a retrospective imagenological review on eleven patients who underwent unilateral MI-TLIF and unilateral transpedicular screw lumbar placement. FCSAs of the multifidus and erector spinae were measured 1 year after surgery at adjacent levels and were compared to the contralateral intact muscles. Measurement differences between the surgical and nonsurgical sites were compared. The interobserver reliability was calculated using an intraclass correlation coefficient. RESULTS: The mean FCSA at the surgical site was 20.97±5.07 cm2 at the superior level and 8.89±2.87 cm2 at the inferior level. The mean FCSA at the contralateral nonsurgical site was 20.15±5.95 cm2 at the superior level and 9.20±2.66 cm2 at the inferior level was. The superior and inferior FCSA measurements showed no significant difference between the surgical and nonsurgical sites (p=0.5, p=0.922, respectively). CONCLUSIONS: Using a mini-open tubular approach through the sulcus between the longissimus and iliocostalis, MI-TLIF and unilateral pedicle screw instrumentation produced minimal paraspinal muscle damage at the superior and inferior adjacent levels.

2.
Int J Spine Surg ; 9: 54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26609509

RESUMO

BACKGROUND: Transpedicular screws are currently placed with open free hand and minimally invasive techniques assisted with either fluoroscopy or navigation. Screw placement accuracy had been investigated with several methods reaching accuracy rates from 71.9% to 98.8%. The objective of this study was to assess the accuracy and safety for 2-D fluoroscopy-guided screw placement assisted with electrophysiological monitoring and the inter-observer agreement for the breach classification. METHODS: A retrospective review was performed on 125 consecutive patients who underwent minimally invasive transforaminal lumbar interbody fusion and transpedicular screws placement between the levels of T-12 and S-1. Screw accuracy was evaluated using a postoperative computed tomography by three independent observers. Pedicle breach was documented when there was a violation in any direction of the pedicle. Inter-observer agreement was assessed with the Kappa coefficient. RESULTS: A total of 470 transpedicular screws were evaluated between the levels of T-12 and S-1. In 57 patients the instrumentation was bilateral and in 68 unilateral. A substantial degree of agreement was found between the observers AB (κ=0.769) and A-C (κ=0.784) and almost perfect agreement between observers B-C (κ=0.928). There were a total of 427.33 (90.92%) screws without breach, 39.33 (8.37%) minor breach pedicles and 3.33 (0.71%) major breach pedicles. The pedicle breach rate was 9.08% Trajectory pedicle breach percentages were as follows: minor medial pedicle breach 4.68%, minor lateral pedicle breach 3.47%, minor inferior pedicle breach 0.22%, and major medial breach 0.70%. No intraoperative instrumentation-related or postoperative clinical complications were encountered and no surgical revision was needed. CONCLUSIONS: Our study demonstrated a high accuracy (90.2%) for 2-D fluoroscopy-guided pedicle screw using electromonitoring. Only 0.71% of the 470 screws had a major breach. Knowing the radiological spine pedicle anatomy and the correct interpretation of EMG are the key factors for this technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...