Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236709

RESUMO

Microwave ablation is commonly used in soft tissue tumors, but its application in bone tumors has been barely analyzed. Antennas to treat bone tissue (~3 cm2), has been lately designed. Bone tumors at pathological stage T1 can reach 8 cm wide. An antenna cannot cover it; therefore, our goal is to evaluate the thermal performance of multi-antenna arrays. Linear, triangular, and square configurations of double slot (DS) and monopole (MTM) antennas were evaluated. A parametric study (finite element method), with variations in distance between antennas (ad) and bone thickness (bt) was implemented. Array feasibility was evaluated by SWR, ablated tissue volume, etc. The linear configuration with DS and MTM antennas showed SWR ≤ 1.6 for ad = 1 mm−15 mm and bt = 20 mm−40 mm, and ad = 10 mm−15 mm and bt = 25 mm−40 mm, respectively; the triangular showed SWR ≤ 1.5 for ad = 5 mm−15 mm and bt = 20 mm−40 mm and ad = 10 mm−15 mm and bt = 25 mm−40 mm. The square configuration (DS) generated SWR ≤ 1.5 for ad = 5 mm−20 mm and bt = 20 mm−40 mm, and the MTM, SWR ≤ 1.5 with ad = 10 mm and bt = 25 mm−40 mm. Ablated tissue was 4.65 cm3−10.46 cm3 after 5 min. According to treatment time and array configuration, maximum temperature and ablated tissue is modified. Bone tumors >3 cm3 can be treated by these antenna-arrays.


Assuntos
Neoplasias Ósseas , Micro-Ondas , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/terapia , Osso e Ossos , Análise de Elementos Finitos , Humanos , Micro-Ondas/uso terapêutico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...