RESUMO
Calcium sensing receptor, a pleiotropic G protein coupled receptor, activates secretory pathways in cancer cells and putatively exacerbates their metastatic behavior. Here, we show that various CaSR mutants, identified in breast cancer patients, differ in their ability to stimulate Rac, a small Rho GTPase linked to cytoskeletal reorganization and cell protrusion, but are similarly active on the mitogenic ERK pathway. To investigate how CaSR activates Rac and drives cell migration, we used invasive MDA-MB-231 breast cancer cells. We revealed, by pharmacological and knockdown strategies, that CaSR activates Rac and cell migration via the Gßγ-PI3K-mTORC2 pathway. These findings further support current efforts to validate CaSR as a relevant therapeutic target in metastatic cancer.
RESUMO
The mammalian target of rapamycin (mTOR) regulates cell growth and survival via two different multiprotein complexes, mTORC1 and mTORC2. The assembly of these serine-threonine kinase multiprotein complexes occurs via poorly understood molecular mechanisms. Here, we demonstrate that GRp58/ERp57 regulates the existence and activity of mTORC1. Endogenous mTOR interacts with GRp58/ERp57 in different mammalian cells. In vitro, recombinant GRp58/ERp57 preferentially interacts with mTORC1. GRp58/ERp57 knockdown reduces mTORC1 levels and phosphorylation of 4E-BP1 and p70(S6K) in response to insulin. In contrast, GRp58/ERp57 overexpression increases mTORC1 levels and activity. A redox-sensitive mechanism that depends on GRp58/ERp57 expression activates mTORC1. Although GRp58/ERp57 is known as an endoplasmic reticulum (ER) resident, we demonstrate its presence at the cytosol, together with mTOR, Raptor, and Rictor as well as a pool of these proteins associated to the ER. In addition, the presence of GRp58/ERp57 at the ER decreases in response to insulin or leucine. Interestingly, a fraction of p70(S6K), but not 4E-BP1, is associated to the ER and phosphorylated in response to serum, insulin, or leucine. Altogether, our results suggest that GRp58/ERp57 is involved in the assembly of mTORC1 and positively regulates mTORC1 signaling at the cytosol and the cytosolic side of the ER.