Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014608

RESUMO

Chromium pollution represents a worldwide concern due to its high toxicity and bioaccumulation in organisms and ecosystems. An interesting material to remove metal ions from water is a whey-protein-based material elaborated by electrospinning, which is an emerging method to produce adsorbent membranes with diverse applications. The aim of this study was to prepare an adsorbent membrane of whey protein isolate (WPI) and polycaprolactone (PCL) by electrospinning to remove chromium ions from water. The adsorbent membrane was synthesized by a central composed design denaturing WPI using 2-Mercaptoethanol and mixing it with PCL to produce electrospun nanofibers. The adsorbent membrane was characterized by denaturation, Scanning Electron Microscope, Fourier-Transform Infrared Spectroscopy, Contact Angle, Thermogravimetric Analysis, and X-ray Photoelectron Spectrometry. The adsorption properties of this membrane were assessed in the removal of chromium. The removal performance of the membrane was enhanced by an increase in temperature showing an endothermic adsorption process. The adsorption process of chromium ions onto the nanofiber membrane followed the Sips adsorption isotherm, while the adsorption kinetics followed a pseudo-second kinetics where the maximum adsorption capacity was 31.0 mg/g at 30 °C and pH 2. This work provides a novel method to fabricate a hybrid membrane with amyloid-type fibrils of WPI and PCL, which is a promising adsorbent to remove heavy metal ions from water.

2.
Membranes (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266234

RESUMO

Water contamination by mercury and chromium has a direct effect in human health. A promising technology to remove heavy metals by membrane filtration is the use of hybrid membranes produced with whey protein fibrils (WPF) and activated carbon (AC). In this study, the best conditions to produce WPF by heat treatment were determined to maximize the removal of mercury and chromium from water using a central composed design. The results indicated that the best conditions to prepare WPF were 74 °C, 7 h and 3.8% of whey protein with adsorption capacities of 25 and 18 mg/g and removal efficiencies of 81 and 57% for mercury and chromium, respectively. WPF and AC were used to prepare a hybrid membrane that was characterized using transmission electron microscopy, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area measurements. Batch filtration experiments were performed with the hybrid membrane for chromium and mercury removal at 25, 50 and 100 mg/L to determine its adsorption capacities. A high performance of the hybrid membrane was demonstrated removing efficiently mercury and chromium from water, thus supporting more than ten filtration cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...