Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Sci ; 46(5): e13143, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523123

RESUMO

When facing many options, we narrow down our focus to very few of them. Although behaviors like this can be a sign of heuristics, they can actually be optimal under limited cognitive resources. Here, we study the problem of how to optimally allocate limited sampling time to multiple options, modeled as accumulators of noisy evidence, to determine the most profitable one. We show that the effective sampling capacity of an agent increases with both available time and the discriminability of the options, and optimal policies undergo a sharp transition as a function of it. For small capacity, it is best to allocate time evenly to exactly five options and to ignore all the others, regardless of the prior distribution of rewards. For large capacities, the optimal number of sampled accumulators grows sublinearly, closely following a power law as a function of capacity for a wide variety of priors. We find that allocating equal times to the sampled accumulators is better than using uneven time allocations. Our work highlights that multialternative decisions are endowed with breadth-depth tradeoffs, demonstrates how their optimal solutions depend on the amount of limited resources and the variability of the environment, and shows that narrowing down to a handful of options is always optimal for small capacities.


Assuntos
Heurística , Recompensa , Tomada de Decisões , Humanos
2.
Proc Natl Acad Sci U S A ; 117(33): 19799-19808, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759219

RESUMO

In multialternative risky choice, we are often faced with the opportunity to allocate our limited information-gathering capacity between several options before receiving feedback. In such cases, we face a natural trade-off between breadth-spreading our capacity across many options-and depth-gaining more information about a smaller number of options. Despite its broad relevance to daily life, including in many naturalistic foraging situations, the optimal strategy in the breadth-depth trade-off has not been delineated. Here, we formalize the breadth-depth dilemma through a finite-sample capacity model. We find that, if capacity is small (∼10 samples), it is optimal to draw one sample per alternative, favoring breadth. However, for larger capacities, a sharp transition is observed, and it becomes best to deeply sample a very small fraction of alternatives, which roughly decreases with the square root of capacity. Thus, ignoring most options, even when capacity is large enough to shallowly sample all of them, is a signature of optimal behavior. Our results also provide a rich casuistic for metareasoning in multialternative decisions with bounded capacity using close-to-optimal heuristics.


Assuntos
Tomada de Decisões , Heurística , Comportamento de Escolha , Humanos , Modelos Teóricos , Racionalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...