Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1184200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664184

RESUMO

Introduction: The ζ subunit is a potent inhibitor of the F1FO-ATPase of Paracoccus denitrificans (PdF1FO-ATPase) and related α-proteobacteria different from the other two canonical inhibitors of bacterial (ε) and mitochondrial (IF1) F1FO-ATPases. ζ mimics mitochondrial IF1 in its inhibitory N-terminus, blocking the PdF1FO-ATPase activity as a unidirectional pawl-ratchet and allowing the PdF1FO-ATP synthase turnover. ζ is essential for the respiratory growth of P. denitrificans, as we showed by a Δζ knockout. Given the vital role of ζ in the physiology of P. denitrificans, here, we assessed the evolution of ζ across the α-proteobacteria class. Methods: Through bioinformatic, biochemical, molecular biology, functional, and structural analyses of several ζ subunits, we confirmed the conservation of the inhibitory N-terminus of ζ and its divergence toward its C-terminus. We reconstituted homologously or heterologously the recombinant ζ subunits from several α-proteobacteria into the respective F-ATPases, including free-living photosynthetic, facultative symbiont, and intracellular facultative or obligate parasitic α-proteobacteria. Results and discussion: The results show that ζ evolved, preserving its inhibitory function in free-living α-proteobacteria exposed to broad environmental changes that could compromise the cellular ATP pools. However, the ζ inhibitory function was diminished or lost in some symbiotic α-proteobacteria where ζ is non-essential given the possible exchange of nutrients and ATP from hosts. Accordingly, the ζ gene is absent in some strictly parasitic pathogenic Rickettsiales, which may obtain ATP from the parasitized hosts. We also resolved the NMR structure of the ζ subunit of Sinorhizobium meliloti (Sm-ζ) and compared it with its structure modeled in AlphaFold. We found a transition from a compact ordered non-inhibitory conformation into an extended α-helical inhibitory N-terminus conformation, thus explaining why the Sm-ζ cannot exert homologous inhibition. However, it is still able to inhibit the PdF1FO-ATPase heterologously. Together with the loss of the inhibitory function of α-proteobacterial ε, the data confirm that the primary inhibitory function of the α-proteobacterial F1FO-ATPase was transferred from ε to ζ and that ζ, ε, and IF1 evolved by convergent evolution. Some key evolutionary implications on the endosymbiotic origin of mitochondria, as most likely derived from α-proteobacteria, are also discussed.

2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163274

RESUMO

Eukarya pyruvate kinases possess glutamate at position 117 (numbering of rabbit muscle enzyme), whereas bacteria have either glutamate or lysine. Those with E117 are K+-dependent, whereas those with K117 are K+-independent. In a phylogenetic tree, 80% of the sequences with E117 are occupied by T113/K114/T120 and 77% of those with K117 possess L113/Q114/(L,I,V)120. This work aims to understand these residues' contribution to the K+-independent pyruvate kinases using the K+-dependent rabbit muscle enzyme. Residues 117 and 120 are crucial in the differences between the K+-dependent and -independent mutants. K+-independent activity increased with L113 and Q114 to K117, but L120 induced structural differences that inactivated the enzyme. T120 appears to be key in folding the protein and closure of the lid of the active site to acquire its active conformation in the K+-dependent enzymes. E117K mutant was K+-independent and the enzyme acquired the active conformation by a different mechanism. In the K+-independent apoenzyme of Mycobacterium tuberculosis, K72 (K117) flips out of the active site; in the holoenzyme, K72 faces toward the active site bridging the substrates through water molecules. The results provide evidence that two different mechanisms have evolved for the catalysis of this reaction.


Assuntos
Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/ultraestrutura , Sequência de Aminoácidos/genética , Animais , Apoenzimas/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Ácido Glutâmico/metabolismo , Lisina/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Filogenia , Potássio/metabolismo , Conformação Proteica , Coelhos
3.
BMC Res Notes ; 11(1): 527, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064476

RESUMO

OBJECTIVE: The genome of Vibrio cholerae has three paralog genes encoding for distinct pyruvate kinases. We were interested in elucidating whether they were expressed, and contributed to the pyruvate kinase activity of V. cholerae. VcIPK and VcIIPK were transformed and expressed in BL21-CodonPlus(DE3)-RIL strain, whereas VcIIIPK could not be transformed. Those studied did contribute to the pyruvate kinase activity of the bacteria. Therefore, our aim was to find an efficient transformation and commonly used over-expression heterologous system for VcIIIPK and develop its purification protocol. RESULTS: vcIpk, vcIIpk and vcIIIpk genes were transformed in six different BL21 expression strains. No transformants were obtained for the vcIIIpk gene using BL21(DE3), BL21(DE3)pLysS and BL21(DE3)CodonPlus-RIL strains. Reduced rates of cell growth were observed for BL21-Gold(DE3)pLysS and Origami B(DE3)pLysS. High efficiency of transformation was obtained for BL21-AI. Using this strain, VcIIIPK was purified but proved to be unstable during its purification and storage. Therefore, the transformation of vcIIIpk gene resulted in a toxic, mildly toxic or nontoxic product for these BL21 strains. Despite VcIIPK and VcIIIPK being phylogenetically related, the preservation of the proteins is drastically different; whereas one is preserved during purification and storage, the other is auto-proteolyzed completely in less than a week.


Assuntos
Expressão Gênica , Piruvato Quinase/metabolismo , Vibrio cholerae/enzimologia , Genes Bacterianos , Isoenzimas
4.
PLoS One ; 12(7): e0178673, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686591

RESUMO

In a previous phylogenetic study of the family of pyruvate kinase EC (2.7.1.40), a cluster with Glu117 and another with Lys117 were found (numbered according to the rabbit muscle enzyme). The sequences with Glu117 have been found to be K+-dependent, whereas those with Lys117 were K+-independent. Interestingly, only γ-proteobacteria exhibit sequences in both branches of the tree. In this context, it was explored whether these phylogenetically distinct pyruvate kinases were both expressed and contribute to the pyruvate kinase activity in Vibrio cholerae. The main findings of this work showed that the isozyme with Glu117 is an active K+-dependent enzyme. At the same substrate concentration, its Vmax in the absence of fructose 1,6 bisphosphate was 80% of that with its effector. This result is in accordance with the non-essential activation described by allosteric ligands for most pyruvate kinases. In contrast, the pyruvate kinase with Lys117 was a K+-independent enzyme displaying an allosteric activation by ribose 5-phosphate. At the same substrate concentration, its activity without the effector was 0.5% of the one obtained in the presence of ribose 5-phosphate, indicating that this sugar monophosphate is a strong activator of this enzyme. This absolute allosteric dependence is a novel feature of pyruvate kinase activity. Interestingly, in the K+-independent enzyme, Mn2+ may "mimic" the allosteric effect of Rib 5-P. Despite their different allosteric behavior, both isozymes display a rapid equilibrium random order kinetic mechanism. The intracellular concentrations of fructose 1,6-bisphosphate and ribose 5-phosphate in Vibrio cholerae have been experimentally verified to be sufficient to induce maximal activation of both enzymes. In addition, Western blot analysis indicated that both enzymes were co-expressed. Therefore, it is concluded that VcIPK and VcIIPK contribute to the activity of pyruvate kinase in this γ-proteobacterium.


Assuntos
Isoenzimas/metabolismo , Potássio/metabolismo , Piruvato Quinase/metabolismo , Vibrio cholerae/enzimologia , Regulação Alostérica , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação , Frutosedifosfatos/metabolismo , Isoenzimas/genética , Cinética , Piruvato Quinase/genética , Coelhos , Ribosemonofosfatos/metabolismo , Especificidade por Substrato , Vibrio cholerae/genética
6.
PLoS One ; 10(3): e0119233, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811853

RESUMO

Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge-independent catalysis.


Assuntos
Proteínas Arqueais/metabolismo , Crenarchaeota/enzimologia , Potássio/metabolismo , Piruvato Quinase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Proteínas Arqueais/genética , Varredura Diferencial de Calorimetria , Catálise , Crenarchaeota/classificação , Cinética , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Filogenia , Estrutura Terciária de Proteína , Piruvato Quinase/genética , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
7.
Int J Mol Sci ; 15(12): 22214-26, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25474090

RESUMO

In a previous phylogenetic study of the family of pyruvate kinase, we found one cluster with Glu117 and another with Lys117. Those sequences with Glu117 have Thr113 and are K+-dependent, whereas those with Lys117 have Leu113 and are K+-independent. The carbonyl oxygen of Thr113 is one of the residues that coordinate K+ in the active site. Even though the side chain of Thr113 does not participate in binding K+, the strict co-evolution between position 117 and 113 suggests that T113 may be the result of the evolutionary pressure to maintain the selectivity of pyruvate kinase activity for K+. Thus, we explored if the replacement of Thr113 by Leu alters the characteristics of the K+ binding site. We found that the polarity of the residue 113 is central in the partition of K+ into its site and that the substitution of Thr for Leu changes the ion selectivity for the monovalent cation with minor changes in the binding of the substrates. Therefore, Thr113 is instrumental in the selectivity of pyruvate kinase for K+.


Assuntos
Potássio/metabolismo , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Dimetil Sulfóxido/metabolismo , Ativação Enzimática , Íons , Magnésio/metabolismo , Modelos Moleculares , Músculos/enzimologia , Proteínas Mutantes/metabolismo , Fosfoenolpiruvato/metabolismo , Coelhos , Especificidade por Substrato , Termodinâmica , Água/metabolismo
8.
FASEB J ; 28(5): 2146-57, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522203

RESUMO

The ζ subunit is a novel natural inhibitor of the α-proteobacterial F1FO-ATPase described originally in Paracoccus denitrificans. To characterize the mechanism by which this subunit inhibits the F1FO nanomotor, the ζ subunit of Paracoccus denitrificans (Pd-ζ) was analyzed by the combination of kinetic, biochemical, bioinformatic, proteomic, and structural approaches. The ζ subunit causes full inhibition of the sulfite-activated PdF1-ATPase with an apparent IC50 of 270 nM by a mechanism independent of the ε subunit. The inhibitory region of the ζ subunit resides in the first 14 N-terminal residues of the protein, which protrude from the 4-α-helix bundle structure of the isolated ζ subunit, as resolved by NMR. Cross-linking experiments show that the ζ subunit interacts with rotor (γ) and stator (α, ß) subunits of the F1-ATPase, indicating that the ζ subunit hinders rotation of the central stalk. In addition, a putatively regulatory nucleotide-binding site was found in the ζ subunit by isothermal titration calorimetry. Together, the data show that the ζ subunit controls the rotation of F1FO-ATPase by a mechanism reminiscent of, but different from, those described for mitochondrial IF1 and bacterial ε subunits where the 4-α-helix bundle of ζ seems to work as an anchoring domain that orients the N-terminal inhibitory domain to hinder rotation of the central stalk.


Assuntos
ATPases Bacterianas Próton-Translocadoras/metabolismo , Paracoccus denitrificans/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Reagentes de Ligações Cruzadas , Imidoésteres , Concentração Inibidora 50 , Cinética , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Rotação , Homologia de Sequência de Aminoácidos , Succinimidas
9.
Arch Biochem Biophys ; 490(2): 129-36, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19703407

RESUMO

In a previous study we found that 30-40% dimethylsulfoxide induces the active conformation of rabbit muscle pyruvate kinase. Because dimethylsulfoxide is known to perturb structure and function of many proteins, we have explored the effect of trehalose on the kinetics of thermal inactivation and stability of pyruvate kinase; this is because trehalose, in contrast to dimethyl sulfoxide, is totally excluded from the hydration shell of proteins. The results show that 600 mM trehalose inhibits the activity of pyruvate kinase by about 20% at 25 degrees C, however, trehalose protects pyruvate kinase from thermal inactivation at 60 degrees C, increases the Tm(app) of unfolding by 7.2 degrees C, induces a more compact state, and stabilizes its tetrameric structure. The inactivation process is irreversible due to the formation of protein aggregates. Trehalose diminishes the rate of formation of intermediates with propensity to aggregate, but does not affect the extent of aggregation. Remarkably, trehalose affects the aggregation process by inducing aggregates with amyloid-like characteristics.


Assuntos
Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/química , Trealose/farmacologia , Animais , Estabilidade Enzimática/efeitos dos fármacos , Técnicas In Vitro , Cinética , Músculos/enzimologia , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Piruvato Quinase/metabolismo , Coelhos , Espectrometria de Fluorescência , Temperatura
10.
J Bioenerg Biomembr ; 40(6): 561-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19139978

RESUMO

Although the capacity of isolated beta-subunits of the ATP synthase/ATPase to perform catalysis has been extensively studied, the results have not conclusively shown that the subunits are catalytically active. Since soluble F(1) of mitochondrial H(+)-ATPase can bind inorganic pyrophosphate (PP(i)) and synthesize PP(i) from medium phosphate, we examined if purified His-tagged beta-subunits from Thermophilic bacillus PS3 can hydrolyze PP(i). The difference spectra in the near UV CD of beta-subunits with and without PP(i) show that PP(i) binds to the subunits. Other studies show that beta-subunits hydrolyze [(32)P] PP(i) through a Mg(2+)-dependent process with an optimal pH of 8.3. Free Mg(2+) is required for maximal hydrolytic rates. The Km for PP(i) is 75 microM and the Vmax is 800 pmol/min/mg. ATP is a weak inhibitor of the reaction, it diminishes the Vmax and increases the Km for PP(i). Thus, isolated beta-subunits are catalytically competent with PP(i) as substrate; apparently, the assembly of beta-subunits into the ATPase complex changes substrate specificity, and leads to an increase in catalytic rates.


Assuntos
Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/metabolismo , Archaea/enzimologia , Proteínas de Bactérias/química , Complexos de ATP Sintetase/isolamento & purificação , Catálise , Ativação Enzimática , Estabilidade Enzimática , Hidrólise , Solubilidade
11.
J Biol Chem ; 281(48): 36482-91, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16973619

RESUMO

The Na(+)-pumping NADH-ubiquinone oxidoreductase has six polypeptide subunits (NqrA-F) and a number of redox cofactors, including a noncovalently bound FAD and a 2Fe-2S center in subunit F, covalently bound FMNs in subunits B and C, and a noncovalently bound riboflavin in an undisclosed location. The FMN cofactors in subunits B and C are bound to threonine residues by phosphoester linkages. A neutral flavin-semiquinone radical is observed in the oxidized enzyme, whereas an anionic flavin-semiquinone has been reported in the reduced enzyme. For this work, we have altered the binding ligands of the FMNs in subunits B and C by replacing the threonine ligands with other amino acids, and we studied the resulting mutants by EPR and electron nuclear double resonance spectroscopy. We conclude that the sodium-translocating NADH:quinone oxidoreductase forms three spectroscopically distinct flavin radicals as follows: 1) a neutral radical in the oxidized enzyme, which is observed in all of the mutants and most likely arises from the riboflavin; 2) an anionic radical observed in the fully reduced enzyme, which is present in wild type, and the NqrC-T225Y mutant but not the NqrB-T236Y mutant; 3) a second anionic radical, seen primarily under weakly reducing conditions, which is present in wild type, and the NqrB-T236Y mutant but not the NqrC-T225Y mutant. Thus, we can tentatively assign the first anionic radical to the FMN in subunit B and the second to the FMN in subunit C. The second anionic radical has not been reported previously. In electron nuclear double resonance spectra, it exhibits a larger line width and larger 8alpha-methyl proton splittings, compared with the first anionic radical.


Assuntos
Flavinas/química , Quinona Redutases/química , ATPase Trocadora de Sódio-Potássio/química , Vibrio cholerae/enzimologia , Sequência de Bases , Espectroscopia de Ressonância de Spin Eletrônica , Flavoproteínas/química , Radicais Livres , Ligantes , Modelos Estatísticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Sódio/química , Treonina/química
12.
J Biol Chem ; 281(41): 30717-24, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16905543

RESUMO

K+ dependence was assumed to be a feature of all pyruvate kinases until it was discovered that some enzymes express K+ -independent activity. Almost all the K+ -independent pyruvate kinases have Lys at position 117, instead of the Glu present in the K+ -dependent muscle enzyme. Mutagenesis studies show that the internal positive charge substitutes for the K+ requirement (Laughlin, L. T. & Reed, G. H. (1997) Arch. Biochem. Biophys. 348, 262-267). In this work a phylogenetic analysis of pyruvate kinase was performed to ascertain the abundance of K+ -independent activities and to explore whether the K+ activating effect is related to the evolutionary history of the enzyme. Of the 230 studied sequences, 46% have Lys at position 117, and the rest have Glu. Pyruvate kinases with Lys117 and Glu117 are separated in two clusters. All of the enzymes of the Glu117 cluster that have been characterized are K+ -dependent, whereas those of the Lys117 cluster are K+ -independent. Thus, there is a strict correlation between the dichotomy of the tree and the dependence of activity on K+. 77% of the pyruvate kinases that possess Lys117 have Lys113/Gln114; they also have Ile, Val, or Leu at position 120. These residues are replaced by Glu117 and Thr113/Lys114/Thr120 in 80% of K+ -dependent pyruvate kinases. Structural analysis indicates that these residues are in a hinge region involved in the acquisition of the catalytic conformation of the enzyme. The route of conversion from K+ -independent to K+ -dependent pyruvate kinases is described. A plausible explanation of how enzymes developed K+ dependence is put forth.


Assuntos
Potássio/química , Piruvato Quinase/química , Piruvato Quinase/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biologia Computacional/métodos , Ácido Glutâmico/química , Lisina/química , Dados de Sequência Molecular , Família Multigênica , Mutagênese , Filogenia , Ligação Proteica , Piruvato Quinase/metabolismo , Coelhos
13.
J Biol Chem ; 280(45): 37924-9, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16147999

RESUMO

For more than 50 years, it has been known that K(+) is an essential activator of pyruvate kinase (Kachmar, J. F., and Boyer, P. D. (1953) J. Biol. Chem. 200, 669-683). However, the role of K(+) in the catalysis by pyruvate kinase has not been totally understood. Previous studies without K(+) showed that the affinity of ADP-Mg(2+) depends on the concentration of phosphoenolpyruvate, although the kinetics of the enzyme at saturating K(+) concentrations show independence in the binding of substrates (Reynard, A. M., Hass, L. F., Jacobsen, D. D. & Boyer, P. D. (1961) J. Biol. Chem. 236, 2277-2283). Here, we explored the kinetics of the enzyme with and without K(+). The results show that without K(+), the kinetic mechanism of pyruvate kinase changes from random to ordered with phosphoenol-pyruvate as first substrate. V(max) with K(+) was about 400 higher than without K(+). In the presence of K(+), the affinities for phosphoenol-pyruvate, ADP-Mg(2+), oxalate, and ADP-Cr(2+) were 2-6-fold higher than in the absence of K(+). This as well as fluorescence data also indicate that K(+) is involved in the acquisition of the active conformation of the enzyme, allowing either phosphoenolpyruvate or ADP to bind independently (random mechanism). In the absence of K(+), ADP cannot bind to the enzyme until phosphoenolpyruvate forms a competent active site (ordered mechanism). We propose that K(+) induces the closure of the active site and the arrangement of the residues involved in the binding of the nucleotide.


Assuntos
Escherichia coli/enzimologia , Potássio/farmacologia , Piruvato Quinase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/genética , Cinética , Ligantes , Magnésio/metabolismo , Modelos Moleculares , Mutação/genética , Potássio/metabolismo , Conformação Proteica , Piruvato Quinase/química , Piruvato Quinase/genética , Ésteres do Ácido Sulfúrico , Água
14.
Biochemistry ; 43(38): 12322-30, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15379571

RESUMO

Many marine and pathogenic bacteria have a unique sodium-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), which generates an electrochemical Na(+) gradient during aerobic respiration. Na(+)-NQR consists of six subunits (NqrA-F) and contains five known redox cofactors: two covalently bound FMNs, one noncovalently bound FAD, one riboflavin, and one 2Fe-2S center. A stable neutral flavin-semiquinone radical is observed in the air-oxidized enzyme, while the NADH- or dithionite-reduced enzyme exhibits a stable anionic flavin-semiquinone radical. The NqrF subunit has been implicated in binding of both the 2Fe-2S cluster and the FAD. Four conserved cysteines (C70, C76, C79, and C111) in NqrF match the canonical 2Fe-2S motif, and three conserved residues (R210, Y212, S246) have been predicted to be part of a flavin binding domain. In this work, these two motifs have been altered by site-directed mutagenesis of individual residues and are confirmed to be essential for binding, respectively, the 2Fe-2S cluster and FAD. EPR spectra of the FAD-deficient mutants in the oxidized and reduced forms exhibit neutral and anionic flavo-semiquinone radical signals, respectively, demonstrating that the FAD in NqrF is not the source of either radical signal. In both the FAD and 2Fe-2S center mutants the line widths of the neutral and anionic flavo-semiquinone EPR signals are unchanged from the wild-type enzyme, indicating that neither of these centers is nearby or coupled to the radicals. Measurements of steady-state turnover using NADH, Q-1, and the artificial electron acceptor ferricyanide strongly support an electron transport pathway model in which the noncovalently bound FAD in the NqrF subunit is the initial electron acceptor and electrons then flow to the 2Fe-2S center.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ferro/metabolismo , Mutagênese/genética , Enxofre/metabolismo , Vibrio cholerae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Flavina-Adenina Dinucleotídeo/análise , Flavina-Adenina Dinucleotídeo/química , Ligantes , Dados de Sequência Molecular , Alinhamento de Sequência , Sódio/química , Sódio/metabolismo , Análise Espectral , Vibrio cholerae/genética
15.
Eur J Biochem ; 270(11): 2377-85, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12755692

RESUMO

In aqueous media, muscle pyruvate kinase is highly selective for K+ over Na+. We now studied the selectivity of pyruvate kinase in water/dimethylsulfoxide mixtures by measuring the activation and inhibition constants of K+ and Na+, i.e. their binding to the monovalent and divalent cation binding sites of pyruvate kinase, respectively [Melchoir J.B. (1965) Biochemistry 4, 1518-1525]. In 40% dimethylsulfoxide the K0.5 app for K+ and Na+ were 190 and 64-fold lower than in water. Ki app for K+ and Na+ decreased 116 and 135-fold between 20 and 40% dimethylsulfoxide. The ratios of Ki app/K0.5 app for K+ and Na+ were 34-3.5 and 3.3-0.2, respectively. Therefore, dimethylsulfoxide favored the partition of K+ and Na+ into the monovalent and divalent cation binding sites of the enzyme. The kinetics of the enzyme at subsaturating concentrations of activators show that K+ and Mg2+ exhibit high selectivity for their respective cation binding sites, whereas when Na+ substitutes K+, Na+ and Mg2+ bind with high affinity to their incorrect sites. This is evident by the ratio of the affinities of Mg2+ and K+ for the monovalent cation binding site, which is close to 200. For Na+ and Mg2+ this ratio is approximately 20. Therefore, the data suggest that K+ induces conformational changes that prevent the binding of Mg2+ to the monovalent cation binding site. Circular dichroism spectra of the enzyme and the magnitude of the transfer and apparent binding energies of K+ and Na+ indicate that structural arrangements of the enzyme induced by dimethylsulfoxide determine the affinities of pyruvate kinase for K+ and Na+.


Assuntos
Dimetil Sulfóxido/química , Potássio/metabolismo , Piruvato Quinase/química , Sódio/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Cátions , Dicroísmo Circular , Relação Dose-Resposta a Droga , Íons , Cinética , Magnésio/química , Potássio/química , Conformação Proteica , Coelhos , Sódio/química , Espectrometria de Fluorescência , Suínos , Termodinâmica , Raios Ultravioleta , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...