Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 14(1)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34592728

RESUMO

In the microvasculature, blood flow-derived forces are key regulators of vascular structure and function. Consequently, the development of hydrogel-based microvessel-on-chip systems that strive to mimic thein vivocellular organization and mechanical environment has received great attention in recent years. However, despite intensive efforts, current microvessel-on-chip systems suffer from several limitations, most notably failure to produce physiologically relevant wall strain levels. In this study, a novel microvessel-on-chip based on the templating technique and using luminal flow actuation to generate physiologically relevant levels of wall shear stress and circumferential stretch is presented. Normal forces induced by the luminal pressure compress the surrounding soft collagen hydrogel, dilate the channel, and create large circumferential strain. The fluid pressure gradient in the system drives flow forward and generates realistic pulsatile wall shear stresses. Rigorous characterization of the system reveals the crucial role played by the poroelastic behavior of the hydrogel in determining the magnitudes of the wall shear stress and strain. The experimental measurements are combined with an analytical model of flow in both the lumen and the porous hydrogel to provide an exceptionally versatile user manual for an application-based choice of parameters in microvessels-on-chip. This unique strategy of flow actuation adds a dimension to the capabilities of microvessel-on-chip systems and provides a more general framework for improving hydrogel-basedin vitroengineered platforms.


Assuntos
Colágeno , Microvasos , Hidrogéis , Estresse Mecânico
2.
Sci Rep ; 11(1): 5901, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723321

RESUMO

Smooth muscle cells (SMCs) are critical players in cardiovascular disease development and undergo complex phenotype switching during disease progression. However, SMC phenotype is difficult to assess and track in co-culture studies. To determine the contractility of SMCs embedded within collagen hydrogels, we performed polarized light imaging and subsequent analysis based on Mueller matrices. Measurements were made both in the absence and presence of endothelial cells (ECs) in order to establish the impact of EC-SMC communication on SMC contractility. The results demonstrated that Mueller polarimetric imaging is indeed an appropriate tool for assessing SMC activity which significantly modifies the hydrogel retardance in the presence of ECs. These findings are consistent with the idea that EC-SMC communication promotes a more contractile SMC phenotype. More broadly, our findings suggest that Mueller polarimetry can be a useful tool for studies of spatial heterogeneities in hydrogel remodeling by SMCs.


Assuntos
Colágeno/química , Miócitos de Músculo Liso/citologia , Imagem Óptica , Animais , Bovinos , Células Endoteliais/citologia , Hidrogéis/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...