Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(11): 11870-11881, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981030

RESUMO

The highly compressible nature of sludge and the presence of colloidal particles cause difficulties in sludge dewatering. Reducing the moisture content in secondary sludge is a key factor in reducing the capital costs, operational costs, and transportation costs in wastewater management. This investigation concerned the combined utilization of quicklime and granulated blast furnace slag (GBFS) to improve sludge dewatering. The experimental work included the initial characterization of the sludge and granulated blast furnace slag and evaluation of the dewatering ability of the treated sludge (CST, moisture content, turbidity, zeta potential, and heavy metal and biopolymer contents). Optimization using the Box-Behnken design (BBD) was carried out with various operational parameters, and the best performance was found to be at a pH of 10.2, a dose of 0.34 g/g DS, and a contact time of 14 min. A characterization study was carried out by scanning electron microscopy (SEM) in conjunction with EDS, X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) to confirm the structural features (dense), elemental composition, and the presence of different functional groups. Hence, this study concluded that the use of quicklime with granulated blast furnace slag is suitable for conditioning during sludge dewatering. Graphical abstract.


Assuntos
Metais Pesados , Esgotos , Biopolímeros , Águas Residuárias
2.
Glycobiology ; 27(5): 438-449, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130266

RESUMO

Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation.


Assuntos
Sulfatos de Condroitina/biossíntese , Dermatan Sulfato/biossíntese , Glicosaminoglicanos/biossíntese , Regeneração/genética , Animais , Proliferação de Células/genética , Cloratos/farmacologia , Sulfatos de Condroitina/genética , Dermatan Sulfato/genética , Dissacarídeos/genética , Dissacarídeos/metabolismo , Equinodermos/genética , Equinodermos/crescimento & desenvolvimento , Glicosaminoglicanos/genética , Sulfotransferases/genética
3.
Glycobiology ; 24(2): 195-207, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24253764

RESUMO

Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.


Assuntos
Sulfatos de Condroitina/isolamento & purificação , Sulfatos de Condroitina/farmacologia , Dermatan Sulfato/isolamento & purificação , Dermatan Sulfato/farmacologia , Equinodermos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Animais , Células CHO , Sulfatos de Condroitina/química , Cricetinae , Cricetulus , Dermatan Sulfato/química , Sinergismo Farmacológico , Glicosaminoglicanos/química , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Mol Nutr Food Res ; 49(4): 355-60, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15744716

RESUMO

Specific activities of both intestinal and renal dissacharidases, such as sucrase, maltase, and lactase, were altered in diabetic rats. Our study was focused to evaluate the effect of feeding quercetin - a bioflavanoid on intestinal and renal dissacharidases in streptozotocin-induced diabetic rats. The rats were fed with 0.1% quercetin in diet. A reduction in intestinal maltase and sucrase, activities in quercetin-fed diabetic rats was observed in contrast to the increased activities in the starch-fed diabetic rats. A significant amelioration in renal dissacharidase activities in quercetin-fed diabetic rats was observed when compared to decreased activity in starch-fed diabetic rats.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Dieta , Dissacaridases/metabolismo , Intestinos/enzimologia , Rim/enzimologia , Quercetina/administração & dosagem , Animais , Glicemia/análise , Carboidratos da Dieta/administração & dosagem , Glicosúria/urina , Lactase/metabolismo , Masculino , Ratos , Ratos Wistar , Amido/administração & dosagem , Sacarase/metabolismo , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...