Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(19): 10785-10801, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045732

RESUMO

Quorum sensing plays crucial roles in bacterial communication including in the process of conjugation, which has large economical and health-related impacts by spreading antibiotic resistance. The conjugative Bacillus subtilis plasmid pLS20 uses quorum sensing to determine when to activate the conjugation genes. The main conjugation promoter, Pc, is by default repressed by a regulator RcopLS20 involving DNA looping. A plasmid-encoded signalling peptide, Phr*pLS20, inactivates the anti-repressor of RcopLS20, named RappLS20, which belongs to the large group of RRNPP family of regulatory proteins. Here we show that DNA looping occurs through interactions between two RcopLS20 tetramers, each bound to an operator site. We determined the relative promoter strengths for all the promoters involved in synthesizing the regulatory proteins of the conjugation genes, and constructed an in vivo system uncoupling these regulatory genes to show that RappLS20 is sufficient for activating conjugation in vivo. We also show that RappLS20 actively detaches RcopLS20 from DNA by preferentially acting on the RcopLS20 molecules involved in DNA looping, resulting in sequestration but not inactivation of RcopLS20. Finally, results presented here in combination with our previous results show that activation of conjugation inhibits competence and competence development inhibits conjugation, indicating that both processes are mutually exclusive.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Conjugação Genética , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas
2.
Mucosal Immunol ; 13(5): 732-742, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32651476

RESUMO

ILCs and T cells are closely related functionally but they significantly differ in their ability to circulate, expand, and renew. Cooperation and reciprocal functional regulation suggest that these cell types are more complementary than simply redundant during immune responses. How ILCs shape T-cell responses is strongly dependent on the tissue and inflammatory context. Likewise, indirect regulation of ILCs by adaptive immunity is induced by environmental cues such as the gut microbiota. Here, we review shared requirements for the development and function of both cell types and divergences in the orchestration of prototypic immune functions. We discuss the diversity of functional interactions between T cells and ILCs during homeostasis and immune responses. Identifying the location and the nature of the tissue microenvironment in which these interactions are taking place may uncover the remaining mysteries of their close encounters.


Assuntos
Comunicação Celular/imunologia , Imunidade Celular , Imunidade Inata , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Biomarcadores , Diferenciação Celular , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica , Imunomodulação/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais , Especificidade por Substrato
3.
Microbiol Resour Announc ; 8(16)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000541

RESUMO

Bacillus pumilus spores can cause foodborne poisonings. B. pumilus strain NRS576 forms spores with a very reduced efficiency due to the presence of a plasmid, named p576. Here, we report the genome sequence of strain B. pumilus NRS576 and its plasmid p576.

4.
Philos Trans R Soc Lond B Biol Sci ; 374(1772): 20180103, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30905295

RESUMO

Our bodies are colonized by a complex ecosystem of bacteria, unicellular eukaryotes and their viruses that together play a major role in our health. Over the past few years tools derived from the prokaryotic immune system known as CRISPR-Cas have empowered researchers to modify and study organisms with unprecedented ease and efficiency. Here we discuss how various types of CRISPR-Cas systems can be used to modify the genome of gut microorganisms and bacteriophages. CRISPR-Cas systems can also be delivered to bacterial population and programmed to specifically eliminate members of the microbiome. Finally, engineered CRISPR-Cas systems can be used to control gene expression and modulate the production of metabolites and proteins. Together these tools provide exciting opportunities to investigate the complex interplay between members of the microbiome and our bodies, and present new avenues for the development of drugs that target the microbiome. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Microbiota
5.
Front Microbiol ; 8: 2138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163424

RESUMO

Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20 , and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL) of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

6.
PLoS Genet ; 13(2): e1006586, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207825

RESUMO

Antibiotic resistance is a serious global problem. Antibiotic resistance genes (ARG), which are widespread in environmental bacteria, can be transferred to pathogenic bacteria via horizontal gene transfer (HGT). Gut microbiomes are especially apt for the emergence and dissemination of ARG. Conjugation is the HGT route that is predominantly responsible for the spread of ARG. Little is known about conjugative elements of Gram-positive bacteria, including those of the phylum Firmicutes, which are abundantly present in gut microbiomes. A critical step in the conjugation process is the relaxase-mediated site- and strand-specific nick in the oriT region of the conjugative element. This generates a single-stranded DNA molecule that is transferred from the donor to the recipient cell via a connecting channel. Here we identified and characterized the relaxosome components oriT and the relaxase of the conjugative plasmid pLS20 of the Firmicute Bacillus subtilis. We show that the relaxase gene, named relLS20, is essential for conjugation, that it can function in trans and provide evidence that Tyr26 constitutes the active site residue. In vivo and in vitro analyses revealed that the oriT is located far upstream of the relaxase gene and that the nick site within oriT is located on the template strand of the conjugation genes. Surprisingly, the RelLS20 shows very limited similarity to known relaxases. However, more than 800 genes to which no function had been attributed so far are predicted to encode proteins showing significant similarity to RelLS20. Interestingly, these putative relaxases are encoded almost exclusively in Firmicutes bacteria. Thus, RelLS20 constitutes the prototype of a new family of relaxases. The identification of this novel relaxase family will have an important impact in different aspects of future research in the field of HGT in Gram-positive bacteria in general, and specifically in the phylum of Firmicutes, and in gut microbiome research.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética , Farmacorresistência Bacteriana/genética , Endodesoxirribonucleases/genética , Firmicutes/enzimologia , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , DNA de Cadeia Simples/genética , Endodesoxirribonucleases/isolamento & purificação , Firmicutes/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Humanos , Plasmídeos/genética
7.
PLoS Genet ; 10(10): e1004733, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340403

RESUMO

Plasmid conjugation plays a significant role in the dissemination of antibiotic resistance and pathogenicity determinants. Understanding how conjugation is regulated is important to gain insights into these features. Little is known about regulation of conjugation systems present on plasmids from Gram-positive bacteria. pLS20 is a native conjugative plasmid from the Gram-positive bacterium Bacillus subtilis. Recently the key players that repress and activate pLS20 conjugation have been identified. Here we studied in detail the molecular mechanism regulating the pLS20 conjugation genes using both in vivo and in vitro approaches. Our results show that conjugation is subject to the control of a complex genetic switch where at least three levels of regulation are integrated. The first of the three layers involves overlapping divergent promoters of different strengths regulating expression of the conjugation genes and the key transcriptional regulator RcoLS20. The second layer involves a triple function of RcoLS20 being a repressor of the main conjugation promoter and an activator and repressor of its own promoter at low and high concentrations, respectively. The third level of regulation concerns formation of a DNA loop mediated by simultaneous binding of tetrameric RcoLS20 to two operators, one of which overlaps with the divergent promoters. The combination of these three layers of regulation in the same switch allows the main conjugation promoter to be tightly repressed during conditions unfavorable to conjugation while maintaining the sensitivity to accurately switch on the conjugation genes when appropriate conditions occur. The implications of the regulatory switch and comparison with other genetic switches involving DNA looping are discussed.


Assuntos
Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , Transcrição Gênica , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas
8.
PLoS Genet ; 9(10): e1003892, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204305

RESUMO

Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.


Assuntos
Movimento Celular/genética , Transferência Genética Horizontal , Peptídeos e Proteínas de Sinalização Intercelular/genética , Plasmídeos/genética , Bacillus subtilis/genética , Resistência Microbiana a Medicamentos/genética , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Dados de Sequência Molecular , Plasmídeos/fisiologia , Transdução de Sinais/genética
9.
Environ Microbiol ; 14(10): 2812-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22779408

RESUMO

Under certain growth conditions, Bacillus subtilis can develop natural competence, the state in which it is able to bind, adsorb and incorporate exogenous DNA. Development of competence is a bistable process and is subject to complex regulation. Rok is a repressor of the key transcriptional activator of competence genes, comK, and limits the size of the subpopulation that develops competence. Here we report the finding that the large conjugative B. subtilis plasmid pLS20 harbours a rok homologue rok(LS20). Although the deduced product of rok(LS20) is considerably shorter than the chromosomally encoded Rok protein, we show that ectopic expression of the plasmid-encoded Rok(LS20) leads to inhibition of competence by repressing comK, and that the effects of the plasmid and chromosomally encoded Rok proteins are additive. We also show that pLS20 inhibits competence in a rok(LS20) -dependent manner and that purified Rok(LS20) preferentially binds to the comK promoter. By analysing the available databases we identified several additional rok-like genes. These putative rok genes can be divided into two groups and we propose that rok(LS20) is the prototype of a newly identified subgroup of nine rok genes. Finally, we discuss the possible role of the plasmid-located rok and its relatedness with other rok genes.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação Bacteriana da Expressão Gênica , Plasmídeos/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
10.
Res Microbiol ; 161(9): 772-82, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20863889

RESUMO

Large plasmids, presumably replicating via the theta mechanism, have been identified in numerous gram-positive bacteria. However, their characterization is rather poor and predominantly limited to those harbored by some (opportunistic) pathogenic bacteria. Here we determined the DNA sequence of the 43.3 kb plasmid p576 from Bacillus pumilus strain NRS576, the first B. pumilus theta-replicating plasmid sequenced. Plasmid p576 has a modular structure, but surprisingly, it does not seem to encode a Rep protein found on most theta-replicating plasmids. However, a ∼1 kb region was identified showing homology with the Rep-independent replication region of Bacillus subtilis plasmid pLS20, and we demonstrated that this region is sufficient for autonomous replication. The plasmid contains various large direct repeat sequences. A likely function could be attributed to at least 15 putative p576 genes. Some of these are predicted to be involved in stable maintenance of the plasmid; others are likely to encode proteins involved in conjugation. p576 also carries a rap-phr cassette whose possible function is discussed.


Assuntos
Bacillus/genética , Replicação do DNA , Plasmídeos/genética , Sequência de Aminoácidos , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...