Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22324, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102148

RESUMO

Management of vehicle traffic is a challenging task as it is non-deterministic by nature. Vehicular Cyber-Physical Systems (VCPS) is the emerging field of dynamics of vehicle management. Vehicle localization is considered an important task in VCPS. Many researchers proposed methodologies for this based on the Global Positioning System (GPS) which poses few location identification errors. Also, there are more vulnerabilities to the existing vehicular positioning system due to Zig-Zag attacks and bad-mouth attacks. In this work, an error-free and secure environment for communication between dynamically moving vehicle models has been proposed. In our proposed model a localization technique based on mathematical geometry which is capable of GPS outages and encompasses the dynamism of vehicle and on-road trajectory has been developed. The proposed model includes Extended Kalman filter-based routing to predict the neighbouring vehicle position. To avoid vulnerabilities created by the malicious nodes, a trust-based computation is performed by each node on its neighbours perceiving the authenticity of received messages. To validate the methodology, NS2 tool has been used to simulate the VCPS and to test the efficiency with different scenarios such as erroneous location, GPS outage, and malicious attack. The result shows that the proposed approach is more optimal and secure than the existing methodologies.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957124

RESUMO

We present a simple dual band absorber design and investigate it in the terahertz (THz) region. The proposed absorber works in dual operating bands at 5.1 THz and 11.7 THz. By adjusting the graphene chemical potential, the proposed absorber has the controllability of the resonance frequency to have perfect absorption at various frequencies. The graphene surface plasmon resonance results in sharp and narrow resonance absorption peaks. For incident angles up to 8°, the structure possesses near-unity absorption. The proposed sensor absorber's functionality is evaluated using sensing medium with various refractive indices. The proposed sensor is simulated for glucose detection and a maximum sensitivity of 4.72 THz/RIU is observed. It has a maximum figure of merit (FOM) and Quality factor (Q) value of 14 and 32.49, respectively. The proposed optimal absorber can be used to identify malaria virus and cancer cells in blood. Hence, the proposed plasmonic sensor is a serious contender for biomedical uses in the diagnosis of bacterial infections, cancer, malaria, and other diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...