Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(10): 8623-8637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656269

RESUMO

BACKGROUND: The process of transdifferentiating epithelial cells to mesenchymal-like cells (EMT) involves cells gradually taking on an invasive and migratory phenotype. Many cell adhesion molecules are crucial for the management of EMT, integrin ß4 (ITGB4) being one among them. Although signaling downstream of ITGB4 has been reported to cause changes in the expression of several miRNAs, little is known about the role of such miRNAs in the process of EMT. METHODS AND RESULTS: The cytoplasmic domain of ITGB4 (ITGB4CD) was ectopically expressed in HeLa cells to induce ITGB4 signaling, and expression analysis of mesenchymal markers indicated the induction of EMT. ß-catenin and AKT signaling pathways were found to be activated downstream of ITGB4 signaling, as evidenced by the TOPFlash assay and the levels of phosphorylated AKT, respectively. Based on in silico and qRT-PCR analysis, miR-383 was selected for functional validation studies. miR-383 and Sponge were ectopically expressed in HeLa, thereafter, western blot and qRT-PCR analysis revealed that miR-383 regulates GATA binding protein 6 (GATA6) post-transcriptionally. The ectopic expression of shRNA targeting GATA6 caused the reversal of EMT and ß catenin activation downstream of ITGB4 signaling. Cell migration assays revealed significantly high cell migration upon ectopic expression ITGB4CD, which was reversed upon ectopic co-expression of miR-383 or GATA6 shRNA. Besides, ITGB4CD promoted EMT in in ovo xenograft model, which was reversed by ectopic expression of miR-383 or GATA6 shRNA. CONCLUSION: The induction of EMT downstream of ITGB4 involves a signaling axis encompassing AKT/miR-383/GATA6/ß-catenin.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Transcrição GATA6 , Integrina beta4 , MicroRNAs , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Integrina beta4/genética , Integrina beta4/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo
2.
Mol Cell Biochem ; 471(1-2): 15-27, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472322

RESUMO

The biological activity of vascular endothelial growth factor (VEGF), the major cytokine regulating the process of angiogenesis is tightly controlled at multiple levels including processes involving post-translational modification such as ADP-ribosylation and glycosylation. ADP-ribosylation is a reversible NAD+-dependent modification, catalyzed by poly ADP-ribose polymerase (PARP) or ADP-ribosyl transferase (ADPRTs) and has been reported by us and others as a modification that reduces the biological activity of VEGF. The factors responsible for any such modification should occur in the secretory pathway, i.e., in the endoplasmic reticulum and Golgi. Our investigation carried out in this direction revealed that ADP-ribosylation of VEGF requires the interplay between members of poly ADP-ribose polymerase (PARP) family in the secretory pathway, viz., ER associated PARP-16 and Golgi associated Tankyrase-2 (TNKS-2). The data presented in this manuscript suggest that PARP-16 catalysis the priming mono ADP-ribosylation of VEGF which is a prerequisite for poly ADP-ribosylation of VEGF by TNKS-2.


Assuntos
Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Tanquirases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Humanos , Poli(ADP-Ribose) Polimerases/genética , Tanquirases/genética
3.
ACS Omega ; 4(4): 7903-7910, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459878

RESUMO

A carbon quantum dot-based carbon paste electrode was fabricated and used for the determination of adrenaline (AD) at the nanomolar level. This fabricated electrode exhibited tremendous electrocatalytic activity for the oxidation of adrenaline in supporting electrolyte (PBS of pH 7.4). Scan rate variation studies with the modified electrode revealed that the overall electrode process was controlled by a diffusion process. A lower detection limit of 6 nM was achieved by chronoamperometry. Interference by biological molecules such as serotonin (5-HT) and ascorbic acid (AA) in the electrochemical oxidation of AD on the fabricated electrode was tested. It was observed that with the modified electrode, the selective determination of AD was possible. Further, with the fabricated electrode, simultaneous analysis of AA, AD, and 5-HT was performed, and it was observed that the overlapped peaks of these analytes on the naked electrode were well resolved into three peaks on the modified electrode. Along with decent sensitivity and selectivity, the electrode also showed higher stability and antifouling nature. The real-time application of the projected scheme was proven by employing the said electrode for adrenaline in adrenaline bitartrate injections.

4.
Front Oncol ; 9: 1516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010617

RESUMO

Generally, changes in the metabolic status of cells under conditions like hypoxia and accumulation of lactate can be sensed by various sensing mechanisms, leading to modulation of a number of signal transduction pathways and transcription factors. Several of the proangiogenic cytokines like VEGF, FGF, PDGF, TGF-ß, Ang-2, ILs, etc. are secreted by cancer cells, under hypoxic microenvironment. These cytokines bind to their receptors on the endothelial cells and activates a number of signaling pathways including Akt/PIP3, Src, p38/MAPK, Smad2/3, etc., which ultimately results in the proliferation and migration of endothelial cells. Transcription factors that are activated in response to the metabolic status of tumors include HIFs, NF-κb, p53, El-2, and FOXO. Many of these transcription factors has been reported to be regulated by a class of histone deacetylase called sirtuins. Sirtuins are NAD+ dependent histone deacetylases that play pivotal role in the regulation of tumor cell metabolism, proliferation, migration and angiogenesis. The major function of sirtuins include, deacetylation of histones as well as some non-histone proteins like NF-κB, FOXOs, PPAR⋎, PGC1-α, enzymes like acetyl coenzymeA and structural proteins like α tubulin. In the cell, sirtuins are generally considered as the redox sensors and their activities are dependent on the metabolic status of the cell. Understanding the intricate regulatory mechanisms adopted by sirtuins, is crucial in devising effective therapeutic strategies against angiogenesis, metastasis and tumor progression. Keeping this in mind, the present review focuses on the role of sirtuins in the process of tumor angiogenesis and the regulatory mechanisms employed by them.

5.
J Cell Physiol ; 233(4): 3498-3514, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28929578

RESUMO

Neo vessel formation by angiogenesis is an important event during many pathological conditions including cancer, where it is indispensable for tumor growth and survival. Although, various pro-angiogenic cytokines and soluble factors, secreted by tumor cells, have been reported to promote angiogenesis, recent studies have shown regulatory role of exosomes, secreted by tumor cells in the process of angiogenesis. These exosomes are capable of carrying nucleic acids, proteins, etc., as their cargo. Under the light of these facts and considering the presence of miRNAs, the non-coding RNAs capable of regulating target gene expression, as one of the major cargos in the exosomes, we investigated, whether exosomes derived from normoxic and hypoxic tumor cell colonies exhibit difference in levels of miR-23∼27∼24 cluster members and if so, to check the significance of their horizontal transfer on the process of angiogenesis. Results of our study showed that exosomes secreted by hypoxic tumor cell colonies possess significantly higher levels of miR23a and can induce angiogenesis. Further, we have shown that exosomes secreted by cells that ectopically over express miR23a is capable of inducing angiogenesis in different angiogenic model systems such as CAM, in ovo Xenograft and HUVEC models systems. Further, mechanistic analysis revealed that miR23a driven regulation of angiogenesis is brought about by down regulation of SIRT1 in the recipient cells. Collectively, the results presented here suggest that exosomal transfer of miR23a from tumor cell colonies can induce the process of angiogenesis by targeting SIRT1 in the recipient endothelial cells.


Assuntos
Movimento Celular/genética , Hipóxia/metabolismo , MicroRNAs/genética , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Linhagem Celular Tumoral , Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...