Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(1): 203-212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298799

RESUMO

Background: There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). For example, increased biomonitoring and epidemiological studies suggest that daily phthalate chemical exposure contributes to neurological and behavioral abnormalities; however, these mechanisms remain poorly understood. Therefore, the current study was aimed at examining the effects of chronic phthalate exposure on rodent anxiety behaviors and cognition and the impact on hypothalamic-pituitary-adrenal axis function. Methods: Adult male mice (C57BL6/J) were administered MEHP via drinking water (1 mg/mL), and anxiety-like behavior and cognition combined with hypothalamic-pituitary-adrenal axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. Results: MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze and center exploration in the open field. Tests of spatial memory and cognition were unchanged. Following MEHP administration, circulating levels of corticosterone and proinflammatory cytokines were significantly increased, while at the tissue level, there were MEHP-dependent reductions in glucocorticoid metabolism genes Hsd11b1 and Hsd11b2. Conclusions: These data suggest that chronic MEHP exposure leads to enhanced generalized anxiety behaviors independent of rodent measures of cognition and memory, which may be driven by MEHP-dependent effects on hypothalamic-pituitary-adrenal axis and peripheral glucocorticoid metabolism function.

2.
bioRxiv ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37886449

RESUMO

There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). Increased biomonitoring and epidemiological studies, for example, suggest that daily phthalate chemical exposure contribute to neurological and behavioral abnormalities, however these mechanisms remain poorly understood. The current study therefore aimed to examine the effects of chronic phthalate exposure on rodent anxiety behaviors, cognition, and the impact on hypothalamic-pituitary- adrenal (HPA)-axis function. Adult male mice (C57BL6/J) were administered mono-2-ethylhexyl phthalate (MEHP) via drinking water (1 mg/ml), and anxiety-like behavior, cognition combined with HPA- axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze (EPM) and center exploration in the open field (OF). Tests of spatial, cognition and memory function were unchanged. Following MEHP administration, circulating levels of corticosterone and pro- inflammatory cytokines were significantly increased, while at the tissue level, MEHP-dependent reductions in glucocorticoid metabolism genes 11ß-hydroxysteroid dehydrogenase (11ß-HSD) 1 and 2. These data suggest that chronic MEHP exposure leads to enhanced generalized-anxiety behaviors independent of rodent measures of cognition and memory, which maybe driven by MEHP-dependent effects on HPA-axis and peripheral glucocorticoid metabolism function.

3.
Am J Physiol Heart Circ Physiol ; 320(5): H1873-H1886, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33739154

RESUMO

Compared with acyanotic congenital heart disease (CHD), cyanotic CHD has an increased risk of lifelong mortality and morbidity. These adverse outcomes may be attributed to delayed cardiomyocyte maturation, since the transition from a hypoxic fetal milieu to oxygen-rich postnatal environment is disrupted. We established a rodent model to replicate hypoxic myocardial conditions spanning perinatal development, and tested the hypothesis that chronic hypoxia impairs cardiac development. Pregnant mice were housed in hypoxia beginning at embryonic day 16. Pups stayed in hypoxia until postnatal day (P)8 when cardiac development is nearly complete. Global gene expression was quantified at P8 and at P30, after recovering in normoxia. Phenotypic testing included electrocardiogram, echocardiogram, and ex vivo electrophysiology study. Hypoxic P8 animals were 47% smaller than controls with preserved heart size. Gene expression was grossly altered by hypoxia at P8 (1,427 genes affected), but normalized after recovery (P30). Electrocardiograms revealed bradycardia and slowed conduction velocity in hypoxic animals at P8, with noticeable resolution after recovery (P30). Notable differences that persisted after recovery (P30) included a 65% prolongation in ventricular effective refractory period, sinus node dysfunction, 23% reduction in ejection fraction, and 16% reduction in fractional shortening in animals exposed to hypoxia. We investigated the impact of chronic hypoxia on the developing heart. Perinatal hypoxia was associated with changes in gene expression and cardiac function. Persistent changes to the electrophysiological substrate and contractile function warrant further investigation and may contribute to adverse outcomes observed in the cyanotic CHD population.NEW & NOTEWORTHY We utilized a new mouse model of chronic perinatal hypoxia to simulate the hypoxic myocardial conditions present in cyanotic congenital heart disease. Hypoxia caused numerous abnormalities in cardiomyocyte gene expression, the electrophysiologic substrate of the heart, and contractile function. Taken together, alterations observed in the neonatal period suggest delayed cardiac development immediately following hypoxia.


Assuntos
Cianose/etiologia , Coração Fetal/crescimento & desenvolvimento , Cardiopatias Congênitas/etiologia , Hipóxia/complicações , Fatores Etários , Animais , Animais Recém-Nascidos , Doença Crônica , Cianose/genética , Cianose/metabolismo , Cianose/fisiopatologia , Modelos Animais de Doenças , Feminino , Coração Fetal/metabolismo , Hipóxia Fetal/complicações , Hipóxia Fetal/genética , Hipóxia Fetal/metabolismo , Hipóxia Fetal/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/fisiopatologia , Frequência Cardíaca , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Camundongos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Organogênese , Gravidez , Efeitos Tardios da Exposição Pré-Natal
4.
J Am Heart Assoc ; 9(21): e017748, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086931

RESUMO

Background The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity. Methods and Results Donor RBCs were processed using standard blood-banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff-heart preparations (rat) or human induced pluripotent stem cell-derived cardiomyocytes. Cardiac parameters remained stable following exposure to "fresh" supernatant from red blood cell units (day 7: 5.8±0.2 mM K+), but older blood products (day 40: 9.3±0.3 mM K+) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell-derived cardiomyocytes after exposure to older supernatant from red blood cell units (-75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10-12 mM K+). Conclusions This is the first study to demonstrate that "older" blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.


Assuntos
Arritmias Cardíacas/etiologia , Coleta de Amostras Sanguíneas/efeitos adversos , Transfusão de Eritrócitos/efeitos adversos , Hiperpotassemia/etiologia , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Eritrócitos , Humanos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos/fisiologia , Ratos , Fatores de Tempo
5.
Birth Defects Res ; 112(17): 1362-1385, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691967

RESUMO

Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.


Assuntos
Ácidos Ftálicos , Plásticos , Criança , Humanos , Lactente , Avaliação de Resultados em Cuidados de Saúde , Ácidos Ftálicos/toxicidade
6.
Am J Physiol Heart Circ Physiol ; 318(2): H354-H365, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886723

RESUMO

Rodent models are frequently employed in cardiovascular research, yet our understanding of pediatric cardiac physiology has largely been deduced from more simplified two-dimensional cell studies. Previous studies have shown that postnatal development includes an alteration in the expression of genes and proteins involved in cell coupling, ion channels, and intracellular calcium handling. Accordingly, we hypothesized that postnatal cell maturation is likely to lead to dynamic alterations in whole heart electrophysiology and calcium handling. To test this hypothesis, we employed multiparametric imaging and electrophysiological techniques to quantify developmental changes from neonate to adult. In vivo electrocardiograms were collected to assess changes in heart rate, variability, and atrioventricular conduction (Sprague-Dawley rats). Intact, whole hearts were transferred to a Langendorff-perfusion system for multiparametric imaging (voltage, calcium). Optical mapping was performed in conjunction with an electrophysiology study to assess cardiac dynamics throughout development. Postnatal age was associated with an increase in the heart rate (181 ± 34 vs. 429 ± 13 beats/min), faster atrioventricular conduction (94 ± 13 vs. 46 ± 3 ms), shortened action potentials (APD80: 113 ± 18 vs. 60 ± 17 ms), and decreased ventricular refractoriness (VERP: 157 ± 45 vs. 57 ± 14 ms; neonatal vs. adults, means ± SD, P < 0.05). Calcium handling matured with development, resulting in shortened calcium transient durations (168 ± 18 vs. 117 ± 14 ms) and decreased propensity for calcium transient alternans (160 ± 18- vs. 99 ± 11-ms cycle length threshold; neonatal vs. adults, mean ± SD, P < 0.05). Results of this study can serve as a comprehensive baseline for future studies focused on pediatric disease modeling and/or preclinical testing.NEW & NOTEWORTHY This is the first study to assess cardiac electrophysiology and calcium handling throughout postnatal development, using both in vivo and whole heart models.


Assuntos
Envelhecimento/fisiologia , Cálcio/metabolismo , Cálcio/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Potenciais de Ação/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Circulação Coronária/fisiologia , Eletrocardiografia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/crescimento & desenvolvimento , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Técnicas In Vitro , Isoproterenol/farmacologia , Perfusão , Ratos , Ratos Sprague-Dawley
7.
Sci Rep ; 8(1): 7356, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743542

RESUMO

Bisphenol chemicals are commonly used in the manufacturing of polycarbonate plastics, polyvinyl chloride plastics, resins, and thermal printing applications. Humans are inadvertently exposed to bisphenols through contact with consumer products and/or medical devices. Recent reports have shown a link between bisphenol-a (BPA) exposure and adverse cardiovascular outcomes; although these studies have been limited to adult subjects and models. Since cardiac physiology differs significantly between the developing and adult heart, we aimed to assess the impact of BPA exposure on cardiac function, using a neonatal cardiomyocyte model. Neonatal rat ventricular myocytes were monitored to assess cell viability, spontaneous beating rate, beat rate variability, and calcium-handling parameters in the presence of control or bisphenol-supplemented media. A range of doses were tested to mimic environmental exposure (10-9-10-8M), maximum clinical exposure (10-5M), and supraphysiological exposure levels (10-4M). Acute BPA exposure altered cardiomyocyte functionality, resulting in a slowed spontaneous beating rate and increased beat rate variability. BPA exposure also impaired intracellular calcium handling, resulting in diminished calcium transient amplitudes, prolonged calcium transient upstroke and duration time. Alterations in calcium handling also increased the propensity for alternans and skipped beats. Notably, the effect of BPA-treatment on calcium handling was partially reversible. Our data suggest that acute BPA exposure could precipitate secondary adverse effects on contractile performance and/or electrical alternans, both of which are dependent on intracellular calcium homeostasis.


Assuntos
Compostos Benzidrílicos/toxicidade , Exposição Materna/efeitos adversos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fenóis/toxicidade , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ratos
8.
J Saudi Heart Assoc ; 28(1): 1-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26778899

RESUMO

OBJECTIVE: Injury to the recurrent laryngeal nerve can lead to significant morbidity during congenital cardiac surgery. The objective is to expand on the limited understanding of the severity and recovery of this iatrogenic condition. DESIGN: A six-year retrospective review of all congenital heart operations at a single institution from January 1, 2008 to December 31, 2013 was performed. All patients with documented vocal cord paralysis on laryngoscopic examination comprised the study cohort. Evaluation of time to vocal cord recovery and need for further surgical intervention was the primary focus. RESULTS: The incidence of post-operative vocal cord paralysis was 1.1% (32 out of 3036 patients; 95% confidence interval: 0.7-1.5%). The majority were left-sided injuries (71%). Overall rate of recovery was 61% with a median time of 10 months in those who recovered, and a total follow up of 46 months. Due to feeding complications, 45% of patients required gastrostomy tube after the injury, and these patients were found to have longer duration of post-operative days of intubation (median 10 vs. 5 days, p = 0.03), ICU length of stay (50 vs. 8 days, p = 0.002), and hospital length of stay (92 vs. 41 days, p = 0.01). No pre-operative variables were identified as predictive of recovery or need for gastrostomy placement. CONCLUSION: Recurrent laryngeal nerve injury is a serious complication of congenital heart surgery that impacts post-operative morbidity, in some cases leading to a need for further intervention, in particular, gastrostomy tube placement. A prospective, multi-center study is needed to fully evaluate factors that influence severity and time to recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...