Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(27): e2309800, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312078

RESUMO

The present work addresses the limitations by fabricating a wide range of negative electrodes, including metal nitrides/sulfides on a 3D bimetallic conductive porous network (3D-Ni and 3D-NiCo) via a dynamic hydrogen bubble template (DHBT) method followed by vapour phase growth (VPG) process. Among the prepared negative electrodes, the 3D-Fe3S4-Fe4N/NiCo nanostructure demonstrates an impressive specific capacitance (Cs) of 1125 F g-1 (2475 mF cm-2) at 1 A g-1 with 80% capacitance retention over 5000 cycles. Similarly, a 3D-Mn3P nanostructured positive electrode fabricated via electrodeposition followed by a phosphorization process exhibits a maximum specific capacity (Cg) of 923.04 C g-1 (1846.08 mF cm-2) at 1 A g-1 with 80% stability. A 3D-Mn3P/Ni//3D-Fe3S4-Fe4N/NiCo supercapattery is also assembled, and it shows a notable CS of 151 F g-1 at 1 A g-1, as well as a high energy density (ED) of 51 Wh kg-1,a power density (PD) of 782.57 W kg-1 and a capacitance efficiency of 76% over 10 000 cycles. This may be ascribed to the use of a bimetallic 3D porous conductive template and the attachment of transition metal sulfide and nitride. The development of negative electrodes and supercapattery devices is greatly aided by this exploration of novel synthesis techniques and material choice.

2.
Small ; 20(23): e2308771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38152967

RESUMO

The study presents the binder-free synthesis of mixed metallic organic frameworks (MMOFs) supported on a ternary metal oxide (TMO) core as an innovative three-dimensional (3D) approach to enhance electron transport and mass transfer during the electrochemical charge-discharge process, resulting in high-performance hybrid supercapacitors. The research demonstrates that the choice of organic linkers can be used to tailor the morphology of these MMOFs, thus optimizing their electrochemical efficiency. Specifically, a NiCo-MOF@NiCoO2@Ni electrode, based on terephthalic linkers, exhibits highly ordered porosity and a vast internal surface area, achieving a maximum specific capacity of 2320 mC cm-2, while maintaining excellent rate capability and cycle stability. With these performances, the hybrid supercapacitor (HSC) achieves a maximum specific capacitance of 424.6 mF cm-2 (specific capacity 653.8 mC cm-2) and 30.7 F cm-3 with energy density values of 10.1 mWh cm-3 at 167.4 mW cm-3 (139.8 µWh cm-2 at 2310 µW cm-2), which are higher than those of previously reported MMOFs based electrodes. This research introduces a novel approach for metal organic framework based HSC electrodes, diverging from the traditional emphasis on metal ions, in order to achieve the desired electrochemical performance.

3.
Micromachines (Basel) ; 13(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296145

RESUMO

MXene has been identified as a new emerging material for various applications including energy storage, electronics, and bio-related due to its wider physicochemical characteristics. Further the formation of hybrid composites of MXene with other materials makes them interesting to utilize in multifunctional applications. The selection of magnetic nanomaterials for the formation of nanocomposite with MXene would be interesting for the utilization of magnetic characteristics along with MXene. However, the selection of the magnetic nanomaterials is important, as the magnetic characteristics of the ferrites vary with the stoichiometric composition of metal ions, particle shape and size. The selection of the electrolyte is also important for electrochemical energy storage applications, as the electrolyte could influence the electrochemical performance. Further, the external magnetic field also could influence the electrochemical performance. This review briefly discusses the synthesis method of MXene, and ferrite magnetic nanoparticles and their composite formation. We also discussed the recent progress made on the MXene/ferrite nanocomposite for potential applications in electrochemical supercapacitor applications. The possibility of magnetic field-assisted supercapacitor applications with electrolyte and electrode materials are discussed.

4.
ACS Sens ; 7(9): 2495-2520, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36036627

RESUMO

As the highest percentage of global mortality is caused by several cardiovascular diseases (CVD), maintenance and monitoring of a healthy cardiovascular condition have become the primary concern of each and every individual. Simultaneously, recent progress and advances in wearable pressure sensor technology have provided many pathways to monitor and detect underlying cardiovascular illness in terms of irregularities in heart rate, blood pressure, and blood oxygen saturation. These pressure sensors can be comfortably attached onto human skin or can be implanted on the surface of vascular grafts for uninterrupted monitoring of arterial blood pressure. While the traditional monitoring systems are time-consuming, expensive, and not user-friendly, flexible sensor technology has emerged as a promising and dynamic practice to collect important health information at a comparatively low cost in a reliable and user-friendly way. This Review explores the importance and necessity of cardiovascular health monitoring while emphasizing the role of flexible pressure sensors in monitoring patients' health conditions to avoid adverse effects. A comprehensive discussion on the current research progress along with the real-time impact and accessibility of pressure sensors developed for cardiovascular health monitoring applications has been provided.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica
5.
Nanotechnology ; 33(33)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35533643

RESUMO

Poly (vinylidene fluoride) (PVDF) and its copolymers have piqued a substantial amount of research interest for its use in modern flexible electronics. The piezoelectricß-phase of the polymers can be augmented with the addition of suitable fillers that promoteß-phase nucleation. In this work, we report an improved output voltage response of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with the incorporation of 10 wt.% Titanium (IV) oxide nanoparticles into the polymer matrix. The nano-filler was dispersed in the polymer matrix to form nanocomposite films via the solution casting technique. X-ray Diffraction and Scanning Electron Microscopy measurements were performed to verify the structure and morphology of the films. Fourier Transform Infrared Spectroscopy revealed enhancement in theß-phase nucleation from ∼15% to ∼36% with the addition of 10 wt.% titania nanoparticles. Thermogravimetric analysis and Differential Scanning Calorimetry results show improved thermal stability of the nanocomposite film, up to 345 °C, as compared to pristine PVDF-HFP. We also demonstrate a facile method for the fabrication of a piezoelectric nanogenerator withß-PVDF-HFP/TiO2nanocomposite as an active layer. The outputs from the fabricated nanogenerator reached up to 8.89 V through human finger tapping motions, paving way for its potential use in the field of sensors, actuators, and self-sustaining flexible devices.

6.
J Mater Chem B ; 9(46): 9433-9460, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755756

RESUMO

In modern days, the usage of trauma fixation devices has significantly increased due to sports injury, age-related issues, accidents, and revision surgery purposes. Numerous materials such as stainless steel, titanium, Co-Cr alloy, polymers, and ceramics have been used to replace the missing or defective parts of the human body. After implantation, body fluids (Na+, K+, and Cl-), protein, and blood cells interact with the surface of metallic implants, which favours the release of ions from the metallic surface to surrounding body tissues, leading to a hypersensitive reaction. Body pH, temperature, and interaction of immune cells also cause metal ion leaching and lose host cell interaction and effective mineralization for better durability. Moreover, microbial invasion is another important crisis, which produces extracellular compounds onto the biomaterial surface through which it escapes from the antimicrobial agents. To enhance the performance of materials by improving mechanical, corrosion resistance, antimicrobial, and biocompatibility properties, surface modification is a prerequisite method in which chemical vapour deposition (CVD), physical vapour deposition (PVD), sol-gel method, and electrochemical deposition are generally involved. The properties of bioceramics such as chemical inertness, bioactivity, biocompatibility, and corrosion protection make them most suitable for the surface functionalization of metallic implants. To the best of our knowledge, very limited literature is available to discuss the interaction of body proteins, pH, and temperature onto bioceramic coatings. Hence, the present review focuses on the corrosion behaviour of different ceramic composite coating materials with different conditions. This review initially briefs the properties and surface chemistry of metal implants and the need for surface modifications by different deposition techniques. Further, mechanical, cytotoxicity, antimicrobial property, and electrochemical behaviour of ceramics and metal nitride coatings are discussed. Finally, future perspectives of coatings are outlined for biomedical applications.


Assuntos
Materiais Biocompatíveis , Cerâmica , Corrosão , Próteses e Implantes , Propriedades de Superfície
7.
Chem Commun (Camb) ; 56(85): 12973-12976, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32996474

RESUMO

Herein, we report a novel, low-temperature solvothermal method to grow 3D-Bi2O3 flower-like microspheres on Ti substrates as a binder-free negative electrode for supercapacitor applications. The Bi2O3/Ti electrode showed an areal capacitance of 1.65 F cm-2 at 4 mA cm-2. Moreover, the 3D-NiCo2O4||3D-Bi2O3 hybrid device delivered high energy and power densities of 31.17 µW h cm-2 and 7500 µW cm-2, respectively. The more optimal energy storage performance based on the strong adhesion of the current collector and self-assembled three-dimensional nanostructures permits efficient electron and ion transportation.

8.
RSC Adv ; 10(40): 24119-24126, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517361

RESUMO

We report a new procedure for large scale, reproducible and fast synthesis of polycrystalline, dense, vertically aligned α-MoO3 nanostructures on conducting (FTO) and non-conducting substrates (Si/SiO2) by using a simple, low-cost hydrothermal technique. The synthesis method consists of two steps, firstly formation of a thermally evaporated Cr/MoO3 seed layer, and secondly growth of the nanostructures in a highly acidic precursor solution. In this report, we document a growth process of vertically aligned α-MoO3 nanostructures with varying growth parameters, such as pH and precursor concentration influencing the resulting structure. Vertically aligned MoO3 nanostructures are valuable for different applications such as electrode material for organic and dye-sensitized solar cells, as a photocatalyst, and in Li-ion batteries, display devices and memory devices due to their high surface area.

9.
Nanomicro Lett ; 12(1): 28, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34138068

RESUMO

We report a wire-shaped three-dimensional (3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites, easy access of electrolyte ions, and facile charge transport for flexible wearable applications. The interconnected and compact electrode delivers a high volumetric capacitance (gravimetric capacitance) of 73 F cm-3 (2446 F g-1), excellent rate capability, and cycle stability. The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire (NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire (Mn3O4/3D-Ni) hybrid supercapacitor exhibits energy density of 153.3 Wh kg-1 and power density of 8810 W kg-1. The red light-emitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions. The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge-discharge times, for smart wearable and implantable devices.

10.
Nanomicro Lett ; 12(1): 85, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-34138304

RESUMO

Electrochemical energy storage devices (EESs) play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources. Additionally, to meet the demand for next-generation electronic applications, optimizing the energy and power densities of EESs with long cycle life is the crucial factor. Great efforts have been devoted towards the search for new materials, to augment the overall performance of the EESs. Although there are a lot of ongoing researches in this field, the performance does not meet up to the level of commercialization. A further understanding of the charge storage mechanism and development of new electrode materials are highly required. The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects. The different charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail. Moreover, recent advancements in this supercapattery research and its electrochemical performances are reviewed. Finally, the challenges and possible future developments in this field are summarized.

11.
Phys Chem Chem Phys ; 20(2): 719-727, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29231217

RESUMO

An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH)2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH)2/C/Cu exhibited a high specific capacitance of 1860 F g-1 at 1 A g-1, and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg-1 and a power density of 37.0 kW kg-1. These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.

12.
Dalton Trans ; 45(8): 3506-21, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26796496

RESUMO

Self-assembled, aggregated, chain-like SnO2 nano-assemblies were synthesized at room temperature by a simple wet chemical route within an hour in the presence of DNA as a scaffold. The average size of the SnO2 particles and the chain diameter were controlled by tuning the DNA to Sn(ii) molar ratio and altering the other reaction parameters. A formation and growth mechanism of the SnO2 NPs on DNA is discussed. The SnO2 chain-like assemblies were utilized as potential anode materials in an electrochemical supercapacitor. From the supercapacitor study, it was found that the SnO2 nanomaterials showed different specific capacitance (Cs) values depending on varying chain-like morphologies and the order of Cs values was: chain-like (small size) > chain-like (large size). The highest Cs of 209 F g(-1) at a scan rate of 5 mV s(-1) was observed for SnO2 nano-assemblies having chain-like structure with a smaller size. The long term cycling stability study of a chain-like SnO2 electrode was found to be stable and retained ca. 71% of the initial specific capacitance, even after 5000 cycles. A supercapacitor study revealed that both morphologies can be used as a potential anode material and the best efficiency was observed for small sized chain-like morphology which is due to their higher BET surface area and specific structural orientation. The proposed route, by virtue of its simplicity and being environmentally benign, might become a future promising candidate for further processing, assembly, and practical application of other oxide based nanostructure materials.


Assuntos
DNA/química , Capacitância Elétrica , Nanoestruturas/química , Nanotecnologia , Compostos de Estanho/química , Técnicas de Química Sintética , Eletroquímica , Cinética , Modelos Moleculares , Conformação Molecular , Temperatura
13.
Inorg Chem ; 54(8): 3851-63, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25843144

RESUMO

ZnWO4 nanoparticles (NPs) that are assembled and aggregated together as chain-like morphology have been synthesized via the reaction of Zn(II) salt solution with sodium tungstate in the presence of the DNA scaffold under 5 min of microwave heating. The reaction parameters have been tuned to control the size of the individual particles and diameter of the chains. The significance of different reaction parameters and specific growth mechanism for the formation of particles is elaborated. The DNA-ZnWO4 nanoassemblies have been used in two potential applications for the first time, namely, supercapacitor and catalysis studies. Supercapacitor study revealed that DNA-ZnWO4 nanoassemblies exhibited good electrochemical properties having high specific capacitance value ∼72 F/g at 5 mV s(-1), and electrodes possessed a good cyclic stability with more than 1000 consecutive times of cycling. Catalysis studies have been done for benzyl alcohol oxidation, and it was observed that DNA-ZnWO4 nanoassemblies having smaller diameter gives better catalytic efficiency compared to other morphology. This is further authenticated from their BET surface area analysis. In the future, the self-assembled DNA-ZnWO4 nanoassemblies could be a promising candidate for the synthesis of other mixed metal oxides and should be applicable in various emerging fields like Li ion batteries or photocatalysis, or as luminescent materials.


Assuntos
Álcool Benzílico/química , DNA/química , Nanopartículas/química , Óxidos/química , Compostos de Tungstênio/química , Compostos de Zinco/química , Catálise , Micro-Ondas , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
14.
ACS Nano ; 9(4): 4337-45, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25794521

RESUMO

In this work, we have fabricated a piezoelectric-driven self-charging supercapacitor power cell (SCSPC) using MnO2 nanowires as positive and negative electrodes and a polyvinylidene difluoride (PVDF)-ZnO film as a separator (as well as a piezoelectric), which directly converts mechanical energy into electrochemical energy. Such a SCSPC consists of a nanogenerator, a supercapacitor, and a power-management system, which can be directly used as a power source. The self-charging capability of SCSPC was demonstrated by mechanical deformation under human palm impact. The SCSPC can be charged to 110 mV (aluminum foil) in 300 s under palm impact. In addition, the green light-emitting diode glowed using serially connected SCSPC as the power source. This finding opens up the possibility of making self-powered flexible hybrid electronic devices.

15.
Phys Chem Chem Phys ; 16(39): 21846-59, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25201177

RESUMO

A new approach is developed for the aqueous phase formation of flake-like and wire-like ß-MnO2 nanomaterials on a DNA scaffold at room temperature (RT) within a shorter time scale. The ß-MnO2 nanomaterials having a band gap energy ∼3.54 eV are synthesized by the reaction of Mn(II) salt with NaOH in the presence of DNA under continuous stirring. The eventual diameter of the MnO2 particles in the wire-like and flake-like morphology and their nominal length can be tuned by changing the DNA to Mn(ii) salt molar ratio and by controlling other reaction parameters. The synthesized ß-MnO2 nanomaterials exhibit pronounced catalytic activity in organic catalysis reaction for the spontaneous polymerization of aniline hydrochloride to emeraldine salt (polyaniline) at RT and act as a suitable electrode material in electrochemical supercapacitor applications. From the electrochemical experiment, it was observed that the ß-MnO2 nanomaterials showed different specific capacitance (Cs) values for the flake-like and wire-like structures. The Cs value of 112 F g(-1) at 5 mV s(-1) was observed for the flake-like structure, which is higher compared to that of the wire-like structure. The flake-like MnO2 nanostructure exhibited an excellent long-term stability, retaining 81% of initial capacitance even after 4000 cycles, whereas for the wire-like MnO2 nanostructure, capacitance decreased and the retention value was only 70% over 4000 cycles. In the future, the present approach can be extended for the formation of other oxide-based materials using DNA as a promising scaffold for different applications such as homogeneous and heterogeneous organic catalysis reactions, Li-ion battery materials or for the fabrication of other high performance energy storage devices.


Assuntos
DNA/química , Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Compostos de Manganês/síntese química , Óxidos/síntese química , Tamanho da Partícula , Propriedades de Superfície , Temperatura
16.
Nanoscale ; 6(14): 8010-23, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24905088

RESUMO

A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO2 NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 µm range. The synthesized wire-like DNA-TiO2 nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO2 nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO2 having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO2 nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO2 nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.


Assuntos
Corantes/química , DNA/química , Nanoestruturas/química , Energia Solar , Titânio/química , Capacitância Elétrica , Eletrodos , Nanoestruturas/ultraestrutura , Nanofios/química , Tamanho da Partícula , Espectrometria por Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...