Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931041

RESUMO

Rice is a major grain crop in numerous countries. In lowland areas, high iron levels in the soil severely hinder its cultivation. The current study explored high-yielding and Fe-toxicity-tolerant irrigated lowland rice (340 lines) among a population derived from a cross between Suakoko 8 and Bao Thai in Edozighi and Ibadan, Nigeria. In contrast to Ibadan, the soils in Edozighi contain a significant amount of iron. For the stated purpose, we carried out a two-year experiment using an alpha lattice design. The data showed significant differences between genotypes for the days to heading, plant height, number of tillers per plant, number of panicles per plant, panicle length, and grain yield. The results revealed that multiple characteristics had both direct and indirect effects on cultivated rice yields. There was a direct and positive influence on the number of days in the 50% heading period (0.31), a direct and negative effect on plant height (-0.94), a direct and positive effect on tiller and panicle numbers, and a direct but negative effect on panicle length (-0.56). The leaf bronzing score was adversely correlated with yield, panicle length, and plant height, while it was positively correlated with the number of panicles, tillers, and days to heading. The findings showed significant changes in yield and yield characteristics between genotypes. Grain yields ranged from 283 to 11,700 kg/ha in the absence of iron in the soil, contrary to 0 to 8230 kg/ha in soil with iron toxicity, with losses estimated between 6 and 94%, demonstrating the resulting disaster. In contrast to the elite parents and varieties used in this study, the ten top genotypes exhibited smaller losses in yield. The authors strongly recommend using these lines for further studies as donors or releasing them in farmer fields in Africa.

2.
Front Plant Sci ; 11: 604938, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584748

RESUMO

Understanding the genetics of field-based tolerance to high iron-associated (HIA) stress in rice can accelerate the development of new varieties with enhanced yield performance in West African lowland ecosystems. To date, few field-based studies have been undertaken to rigorously evaluate rice yield performance under HIA stress conditions. In this study, two NERICA × O. sativa bi-parental rice populations and one O.sativa diversity panel consisting of 296 rice accessions were evaluated for grain yield and leaf bronzing symptoms over multiple years in four West African HIA stress and control sites. Mapping of these traits identified a large number of QTLs and single nucleotide polymorphisms (SNPs) associated with stress tolerance in the field. Favorable alleles associated with tolerance to high levels of iron in anaerobic rice soils were rare and almost exclusively derived from the indica subpopulation, including the most favorable alleles identified in NERICA varieties. These findings highlight the complex genetic architecture underlying rice response to HIA stress and suggest that a recurrent selection program focusing on an expanded indica genepool could be productively used in combination with genomic selection to increase the efficiency of selection in breeding programs designed to enhance tolerance to this prevalent abiotic stress in West Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...