Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 36(6): 1411-1429.e10, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38701776

RESUMO

Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.


Assuntos
Mitocôndrias , Condicionamento Físico Animal , Animais , Masculino , Feminino , Mitocôndrias/metabolismo , Ratos , Músculo Esquelético/metabolismo , Humanos , Ratos Sprague-Dawley , Tecido Adiposo Marrom/metabolismo , Glândulas Suprarrenais/metabolismo , Multiômica
2.
J Clin Endocrinol Metab ; 109(4): e1345-e1358, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38066593

RESUMO

OBJECTIVES: Insulin resistance is associated with elevations in plasma branched-chain amino acids (BCAAs). BCAAs compete with aromatic amino acids including tryptophan for uptake into ß cells. To explore relationships between BCAAs and tryptophan metabolism, adiposity, and glucose tolerance, we compared urine metabolites in overweight/obese youth with type 2 diabetes (T2D) with those in nondiabetic overweight/obese and lean youth. METHODS: Metabolites were measured in 24-hour and first-morning urine samples of 56 nondiabetic adolescents with overweight/obesity, 42 adolescents with T2D, and 43 lean controls, aged 12 to 21 years. Group differences were assessed by Kruskal Wallis or ANOVA. RESULTS: Groups were comparable for age, pubertal status, and ethnicity. Youth with T2D were predominantly female and had highest percent body fat. BCAAs, branched-chain ketoacids (BCKAs), tryptophan, and kynurenine were higher in urine of subjects with T2D. There were no differences between lean controls and nondiabetic youth with overweight/obesity. T2D was associated with diversion of tryptophan from the serotonin to the kynurenine pathway, with higher urinary kynurenine/serotonin ratio and lower serotonin/tryptophan and 5-HIAA/kynurenine ratios. Urinary BCAAs, BCKAs, tryptophan, and ratios reflecting diversion to the kynurenine pathway correlated positively with metrics of body fat and hemoglobin A1c. Increases in these metabolites in the obese T2D group were more pronounced and statistically significant only in adolescent girls. CONCLUSION: Increases in urinary BCAAs and BCKAs in adolescent females with T2D are accompanied by diversion of tryptophan metabolism from the serotonin to the kynurenine pathway. These adaptations associate with higher risks of T2D in obese adolescent females than adolescent males.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Infantil , Humanos , Feminino , Adolescente , Masculino , Triptofano , Sobrepeso/complicações , Cinurenina , Caracteres Sexuais , Serotonina , Obesidade Infantil/complicações , Aminoácidos de Cadeia Ramificada
3.
Endocrinol Diabetes Metab ; 6(6): e448, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37715520

RESUMO

OBJECTIVE: Hyperglycaemia in Type 1 diabetes (T1D) results from an absolute insulin deficiency. However, insulin resistance (IR) may exacerbate glycaemic instability in T1D and contribute to long-term cardiovascular complications. We previously showed that IR in teenagers with obesity is associated with sex-dependent derangements in the catabolism of branched-chain amino acids (BCAA) and fatty acids. Here we hypothesized that byproducts of BCAA and fatty acid metabolism may serve as biomarkers or determinants of glycaemic control and IR in prepubertal or early pubertal children with T1D. METHODS: Metabolites, hormones and cytokines from fasting blood samples were analysed in 28 children (15 females, 13 males; age 6-11 years) with T1D. Principal components analysis (PCA) and multiple linear regression models were used to correlate metabolites of interest with glycaemic control, total daily insulin dose (TDD, units/kg/d), adiponectin and the triglyceride (TG) to high-density lipoprotein (HDL) ratio. RESULTS: Males and females were comparable in age, BMI-z, insulin sensitivity, glycaemic control, inflammatory markers, BCAAs and C2/C3/C5-acylcarnitines. The majority of components retained in PCA were related to fatty acid oxidation (FAO) and BCAA catabolism. HbA1c correlated positively with Factor 2 (acylcarnitines, incomplete FAO) and Factor 9 (fasting glucose). TDD correlated negatively with C3 and C5 and Factor 10 (BCAA catabolism) and positively with the ratio of C2 to C3 + C5 and Factor 9 (fasting glucose). CONCLUSIONS: These findings suggest that glucose intolerance in prepubertal or early pubertal children with T1D is accompanied by incomplete FAO while TDD is associated with preferential catabolism of fats relative to amino acids.


Assuntos
Diabetes Mellitus Tipo 1 , Resistência à Insulina , Criança , Feminino , Humanos , Masculino , Aminoácidos de Cadeia Ramificada/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator IX , Ácidos Graxos/metabolismo , Glucose , Controle Glicêmico , Insulina/metabolismo , Insulina Regular Humana
4.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711881

RESUMO

Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart and skeletal muscle, while we detected mild responses in the brain, lung, small intestine and testes. The colon response was characterized by non-linear dynamics that resulted in upregulation of mitochondrial function that was more prominent in females. Brown adipose and adrenal tissues were characterized by substantial downregulation of mitochondrial pathways. Training induced a previously unrecognized robust upregulation of mitochondrial protein abundance and acetylation in the liver, and a concomitant shift in lipid metabolism. The striated muscles demonstrated a highly coordinated response to increase oxidative capacity, with the majority of changes occurring in protein abundance and post-translational modifications. We identified exercise upregulated networks that are downregulated in human type 2 diabetes and liver cirrhosis. In both cases HSD17B10, a central dehydrogenase in multiple metabolic pathways and mitochondrial tRNA maturation, was the main hub. In summary, we provide a multi-omic, cross-tissue atlas of the mitochondrial response to training and identify candidates for prevention of disease-associated mitochondrial dysfunction.

5.
Curr Biol ; 33(1): 86-97.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36528024

RESUMO

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.


Assuntos
Ursidae , Animais , Fluxo Gênico , Variação Genética , Genoma , Estudo de Associação Genômica Ampla , Ursidae/genética
6.
J Gerontol A Biol Sci Med Sci ; 77(12): 2395-2401, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35965483

RESUMO

Calorie restriction (CR) increases healthy life span and is accompanied by slowing or reversal of aging-associated DNA methylation (DNAm) changes in animal models. In the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIETM) human trial, we evaluated associations of CR and changes in whole-blood DNAm. CALERIETM randomized 220 healthy, nonobese adults in a 2:1 allocation to 2 years of CR or ad libitum (AL) diet. The average CR in the treatment group through 24 months of follow-up was 12%. Whole blood (baseline, 12, and 24 months) DNAm profiles were measured. Epigenome-wide association study (EWAS) analysis tested CR-induced changes from baseline to 12 and 24 months in the n = 197 participants with available DNAm data. CR treatment was not associated with epigenome-wide significant (false discovery rate [FDR] < 0.05) DNAm changes at the individual-CpG-site level. Secondary analysis of sets of CpG sites identified in published EWAS revealed that CR induced DNAm changes opposite to those associated with higher body mass index and cigarette smoking (p < .003 at 12- and 24-month follow-ups). In contrast, CR altered DNAm at chronological-age-associated CpG sites in the direction of older age (p < .003 at 12- and 24-month follow-ups). Although individual CpG site DNAm changes in response to CR were not identified, analyses of sets CpGs identified in prior EWAS revealed CR-induced changes to blood DNAm. Altered CpG sets were enriched for insulin production, glucose tolerance, inflammation, and DNA-binding and DNA-regulation pathways, several of which are known to be modified by CR. DNAm changes may contribute to CR effects on aging.


Assuntos
Restrição Calórica , Epigênese Genética , Humanos , DNA , Metilação de DNA , Epigenoma , Estudo de Associação Genômica Ampla
7.
J Endocr Soc ; 6(4): bvac024, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35265783

RESUMO

Context: The effects of the coronavirus disease 2019 (COVID-19) pandemic on the incident cases of pediatric type 1 diabetes (T1D) and type 2 diabetes (T2D) are not clear. Objective: To identify trends in incidence and presentation of pediatric new-onset T1D and T2D during the COVID-19 pandemic. Methods: A retrospective chart review was conducted. Demographics, anthropometrics, and initial laboratory results from patients ages 0 through 21 years who presented with new-onset diabetes to a pediatric tertiary care center were recorded. Results: During the pandemic, incident cases of pediatric T1D increased from 31 in each of the prior 2 years to 46; an increase of 48%. Incident cases of pediatric T2D increased by 231% from 2019 to 2020. The number of incident cases of pediatric T2D increased significantly more than the number of incident cases of pediatric T1D (P = 0.009). Patients with T2D were more likely to present in diabetic ketoacidosis (DKA), though this was not statistically significant (P = 0.093). Severe DKA was higher compared with moderate DKA (P = 0.036) in incident cases of pediatric T2D. During the pandemic, for the first time, incident cases of T2D accounted for more than one-half of all newly diagnosed pediatric diabetes cases (53%). Conclusions: There were more incident pediatric T1D and T2D cases as well as an increase in DKA severity in T2D at presentation during the COVID-19 pandemic. More importantly, incident T2D cases were higher than the incident T1D during the pandemic. This clearly suggests a disruption and change in the pediatric diabetes trends with profound individual and community health consequences.

8.
EClinicalMedicine ; 43: 101261, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028547

RESUMO

BACKGROUND: For many cardiovascular risk factors there is no lower limit to which further reduction will result in decreased disease risk; this includes values within ranges considered normal for healthy adults. This seems to be true for new emerging metabolic risk factors identified by innovative technological advances. Further, there seems to be ever evolving evidence of differential responses to lifestyle interventions by sex and body compositions in the normal range. In this secondary analysis, we had the opportunity to test these principles for newly identified molecular biomarkers of cardiometabolic risk in a young (21-50 years), normal weight healthy population undergoing calorie restriction for two years. METHODS: The Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) was a 24-month, multicenter, randomized controlled trial (May 2007-November 2012) in healthy, adults without obesity to evaluate the potential for calorie restriction (CR) to promote anti-aging adaptations, including those associated with disease risk. 218 participants (age 37.9 ± 7.2 years and body mass index (BMI) 25.1 ± 1.7 kg/m2, mean±SD) were randomized 2:1 to 24 months of CR (prescribed as 25% reduction from baseline calorie intake) versus ad libitum (AL). Fasting plasma from baseline, 12, and 24 months was used for assessments of lipoproteins, metabolites, and inflammatory markers using nuclear magnetic resonance spectroscopy. FINDINGS: Averaging 11.9% CR, the CR group had reductions at 12 and 24 months in the cardiovascular disease risk markers, apolipoprotein B and GlycA, and risks for insulin resistance and type 2 diabetes-Lipoprotein Insulin Resistance Index and Diabetes Risk Index (all PCRvsAL ≤0.0009). Insulin resistance and diabetes risk improvements resulted from CR-induced alterations in lipoproteins, specifically reductions in triglyceride-rich lipoprotein particles and low-density lipoprotein particles, a shift to larger high-density lipoprotein particles (more effective cholesterol transporters), and reductions in branched chain amino acids (BCAAs) (all PCRvsAL ≤0.004). These CR responses were more pronounced in overweight than normal weight participants and greater in men than women. INTERPRETATION: In normal to slightly overweight adults without overt risk factors or disease, 12 months of ∼12% CR improved newly identified risk markers for atherosclerotic cardiovascular disease, insulin resistance and type 2 diabetes. These markers suggest that CR improves risks by reducing inflammation and BCAAs and shifting lipoproteins from atherogenic to cholesterol transporting. Additionally, these improvements are greater for men and for those with greater BMIs indicating sex and BMI-influences merit attention in future investigations of lifestyle-mediated improvements in disease risk factors. FUNDING: The CALERIE™ trial design and implementation were supported by a National Institutes of Health (NIH) U-grant provided to four institutions, the three intervention sites and a coordinating center (U01 AG022132, U01 AG020478, U01 AG020487 U01 AG020480). For this secondary analysis including sample acquisition and processing, data analysis and interpretation, additional funding was provided by the NIH to authors as follows: R01 AG054840 (MO, VBK); R33 AG070455 (KMH, DCP, MB, SBR, CKM, LMR, SKD, CFP, CJR, WEK); P30 DK072476 (CKM, LMR); and U54 GM104940 (CKM, LMR).

9.
J Endocr Soc ; 7(2): bvac190, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36632209

RESUMO

Context: Blood pressure and plasma catecholamines normally decline during sleep and rapidly increase in early morning. This is blunted in adults with type 2 diabetes (T2D). Objective: We hypothesize that increased sympatho-adrenal activity during sleep differentiates youth with T2D from nondiabetic obese youth and lean youth. Methods: Fasting spot morning and 24-hour urines were collected in obese adolescents with and without T2D, and normal-weight controls. Fractionated free urine catecholamines (epinephrine, norepinephrine, and dopamine) were measured, and the ratio of fasting spot morning to 24-hour catecholamines was calculated. Results: Urinary 24-hour catecholamine levels were comparable across the 3 groups. Fasting morning epinephrine and the ratio of fasting morning/24-hour epinephrine were higher in youth with T2D (P = 0.004 and P = 0.035, respectively). In males, the ratio of fasting morning/24-hour epinephrine was also higher in youth with T2D (P = 0.005). In females, fasting morning norepinephrine and the ratio of fasting morning/24-hour dopamine were lower in obese youth with and without T2D (P = 0.013 and P = 0.005, respectively) compared with lean youth. Systolic blood pressure was higher in diabetic participants than other groups; males trended higher than females. Conclusion: Circadian rhythm in catecholamines is disrupted in youth-onset T2D, with a blunted overnight fall in urinary epinephrine in males. Conversely, fasting morning norepinephrine and dopamine levels were lower in obese females with or without T2D. Higher nocturnal catecholamines in males with T2D might associate with, or predispose to, hypertension and cardiovascular complications. Lower catecholamine excretion in females with obesity might serve an adaptive, protective role.

10.
Front Cardiovasc Med ; 8: 721354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485418

RESUMO

Background: To provide energy for cardiopulmonary function and maintenance of blood glucose, acute aerobic exercise induces lipolysis, fatty acid oxidation (FAO), glycolysis, and glycogenolysis/gluconeogenesis. These adaptations are mediated by increases in cortisol, growth hormone (GH), and catecholamines and facilitated by a decline in insulin. Branched-chain amino acids (BCAA) also undergo catabolism during intense exercise. Here, we investigated the relationship between BCAA catabolism and metrics of cardiopulmonary function in healthy, well-developed, mature adolescent athletes undergoing an acute bout of maximal aerobic exercise. Hypothesis: We hypothesized: (a) acute maximal exercise in adolescents induces lipolysis, FAO, and BCAA catabolism associated with increases in GH and cortisol and a reduction in insulin; (b) increases in GH are associated with increases in ghrelin; and (c) metrics of cardiopulmonary function (aVO2, rVO2, aVO2/HRmax) following maximal exercise correlate with increases in GH secretion, FAO, and BCAA catabolism. Methods: Blood samples before and after maximal cardiopulmonary exercise in 11 adolescent athletes were analyzed by tandem-mass spectrometry. Paired, two-tailed student's t-tests identified significant changes following exercise. Linear regression determined if pre-exercise metabolite levels, or changes in metabolite levels, were associated with aVO2, rVO2, and aVO2/HRmax. Sex and school of origin were included as covariates in all regression analyses. Results: Following exercise there were increases in GH and cortisol, and decreases in ghrelin, but no changes in glucose or insulin concentrations. Suggesting increased lipolysis and FAO, the levels of glycerol, ketones, ß-hydroxybutyrate, and acetylcarnitine concentrations increased. Pyruvate, lactate, alanine, and glutamate concentrations also increased. Plasma concentrations of valine (a BCAA) declined (p = 0.002) while valine degradation byproducts increased in association with decreases in urea cycle amino acids arginine and ornithine. Metrics of cardiopulmonary function were associated with increases in propionylcarnitine (C3, p = 0.013) and Ci4-DC/C4-DC (p < 0.01), byproducts of BCAA catabolism. Conclusions: Induction of lipolysis, FAO, gluconeogenesis, and glycogenolysis provides critical substrates for cardiopulmonary function during exercise. However, none of those pathways were significantly associated with metrics of cardiopulmonary function. The associations between rVO2, and aVO2/HRmax and C3 and Ci4-DC/C4-DC suggest that the cardiopulmonary response to maximal exercise in adolescents is linked to BCAA utilization and catabolism.

11.
PLoS One ; 9(9): e106389, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254499

RESUMO

BACKGROUND: Complete cranial cruciate ligament rupture (CR) is a common cause of pelvic limb lameness in dogs. Dogs with unilateral CR often develop contralateral CR over time. Although radiographic signs of contralateral stifle joint osteoarthritis (OA) influence risk of subsequent contralateral CR, this risk has not been studied in detail. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective longitudinal cohort study of client-owned dogs with unilateral CR to determine how severity of radiographic stifle synovial effusion and osteophytosis influence risk of contralateral CR over time. Detailed survival analysis was performed for a cohort of 85 dogs after case filtering of an initial sample population of 513 dogs. This population was stratified based on radiographic severity of synovial effusion (graded on a scale of 0, 1, and 2) and severity of osteophytosis (graded on a scale of 0, 1, 2, and 3) of both index and contralateral stifle joints using a reproducible scoring method. Severity of osteophytosis in the index and contralateral stifles was significantly correlated. Rupture of the contralateral cranial cruciate ligament was significantly influenced by radiographic OA in both the index and contralateral stifles at diagnosis. Odds ratio for development of contralateral CR in dogs with severe contralateral radiographic stifle effusion was 13.4 at one year after diagnosis and 11.4 at two years. Odds ratio for development of contralateral CR in dogs with severe contralateral osteophytosis was 9.9 at one year after diagnosis. These odds ratios were associated with decreased time to contralateral CR. Breed, age, body weight, gender, and tibial plateau angle did not significantly influence time to contralateral CR. CONCLUSION: Subsequent contralateral CR is significantly influenced by severity of radiographic stifle effusion and osteophytosis in the contralateral stifle, suggesting that synovitis and arthritic joint degeneration are significant factors in the disease mechanism underlying the arthropathy.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/diagnóstico por imagem , Cães/lesões , Animais , Feminino , Masculino , Radiografia , Fatores de Risco , Ruptura/diagnóstico por imagem , Ruptura/veterinária , Análise de Sobrevida
12.
PLoS One ; 9(6): e97329, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892866

RESUMO

Cranial cruciate ligament rupture (CR) is a degenerative condition in dogs that typically has a non-contact mechanism. Subsequent contralateral rupture often develops in dogs with unilateral CR. Synovitis severity is an important factor that promotes ligament degradation. Consequently, we wished to evaluate the utility of arthroscopy for assessment of stifle synovitis in dogs with CR. Herein, we report results of a prospective study of 27 dogs with unilateral CR and bilateral radiographic osteoarthritis. Arthroscopic images and synovial biopsies from the lateral and medial joint pouches were obtained bilaterally and graded for synovial hypertrophy, vascularity, and synovitis. Synovial tartrate-resistant acid phosphatase-positive (TRAP+) macrophages, CD3(+) T lymphocytes, Factor VIII+ blood vessels, and synovial intima thickness were quantified histologically and related to arthroscopic observations. Risk of subsequent contralateral CR was examined using survival analysis. We found that arthroscopic scores were increased in the index stifle, compared with the contralateral stifle (p<0.05). Numbers of CD3+ T lymphocytes (SR = 0.50, p<0.05) and TRAP+ cells in joint pouches (SR = 0.59, p<0.01) were correlated between joint pairs. Arthroscopic grading of vascularity and synovitis was correlated with number density of Factor VIII+ vessels (SR>0.34, p<0.05). Arthroscopic grading of villus hypertrophy correlated with numbers of CD3(+) T lymphocytes (SR = 0.34, p<0.05). Synovial intima thickness was correlated with arthroscopic hypertrophy, vascularity, and synovitis (SR>0.31, p<0.05). Strong intra-observer and moderate inter-observer agreement for arthroscopic scoring was found. Dog age and arthroscopic vascularity significantly influenced risk of contralateral CR over time. We conclude that arthroscopic grading of synovitis is a precise tool that correlates with histologic synovitis. Arthroscopy is useful for assessment of stifle synovitis in client-owned dogs, and could be used in longitudinal clinical trials to monitor synovial responses to disease-modifying therapy.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirurgia , Artroscopia , Joelho de Quadrúpedes/patologia , Joelho de Quadrúpedes/cirurgia , Sinovite/cirurgia , Sinovite/veterinária , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Biomarcadores/sangue , Cães , Feminino , Inflamação/sangue , Inflamação/patologia , Masculino , Análise Multivariada , Modelos de Riscos Proporcionais , Radiografia , Ruptura , Joelho de Quadrúpedes/diagnóstico por imagem , Análise de Sobrevida , Membrana Sinovial/diagnóstico por imagem , Membrana Sinovial/patologia , Sinovite/sangue , Sinovite/diagnóstico por imagem
13.
ACS Chem Neurosci ; 4(3): 418-34, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23509978

RESUMO

We utilized three independent techniques, immunocytochemistry (ICC), single cell mass spectrometry (MS), and in situ hybridization (ISH), to localize neuropeptides and their transcripts in the nervous system of the nematode Ascaris suum . AF11 (SDIGISEPNFLRFa) is an endogenous peptide with potent paralytic effects on A. suum locomotory behavior. A highly specific antibody to AF11 showed robust immunostaining for AF11 in the paired AVK neurons in the ventral ganglion. We traced the processes from the AVK neurons into the ventral nerve cord and identified them as ventral cord interneurons. MS and MS/MS of single dissected AVKs detected AF11, two previously characterized peptides (AF25 and AF26), seven novel sequence-related peptides, including several sharing a PNFLRFamide C-terminus, and peptide NY, a peptide with an unrelated sequence. Also present in a subset of AVKs was AF2, a peptide encoded by the afp-4 transcript. By sequencing the afp-11 transcript, we discovered that it encodes AF11, all the AF11-related peptides detected by MS in AVK, and peptide NY. ISH detected the afp-11 transcript in AVK neurons, consistent with other techniques. ISH did not detect afp-11 in the ALA neuron, although both ICC and MS found AF11 in ca. 30% of ALAs. All 10 AF11-related peptides reduced acetylcholine-induced muscle contraction, but they differed in their rate of reversal of inhibition after removal of the peptide.


Assuntos
Hibridização In Situ/métodos , Espectrometria de Massas/métodos , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Animais , Ascaris suum/citologia , Ascaris suum/genética , Cistos Glanglionares/genética , Regulação da Expressão Gênica , Imuno-Histoquímica , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Neurônios/química , Neuropeptídeos/química , Técnicas de Cultura de Órgãos , Membranas Sinápticas/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-22919576

RESUMO

Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS). Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.


Assuntos
Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Brucella abortus/genética , Brucella abortus/imunologia , Imunidade Adaptativa , Animais , Apoptose , Proteínas de Bactérias/genética , Brucella abortus/enzimologia , Brucella abortus/patogenicidade , Brucelose/imunologia , Brucelose/prevenção & controle , Bovinos , Membrana Celular/ultraestrutura , Detergentes/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Microscopia Eletrônica de Transmissão , Polimixina B/farmacologia , Recombinação Genética , Superóxido Dismutase/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/microbiologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...