Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 60(22): N405-17, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26509743

RESUMO

Metastasis is the process by which cells from a primary tumor disperse and form new tumors at distant anatomical locations. The treatment and prevention of metastatic cancer remains an extremely challenging problem. This work introduces a novel biologically motivated objective function to the radiation optimization community that takes into account metastatic risk instead of the status of the primary tumor. In this work, we consider the problem of developing fractionated irradiation schedules that minimize production of metastatic cancer cells while keeping normal tissue damage below an acceptable level. A dynamic programming framework is utilized to determine the optimal fractionation scheme. We evaluated our approach on a breast cancer case using the heart and the lung as organs-at-risk (OAR). For small tumor [Formula: see text] values, hypo-fractionated schedules were optimal, which is consistent with standard models. However, for relatively larger [Formula: see text] values, we found the type of schedule depended on various parameters such as the time when metastatic risk was evaluated, the [Formula: see text] values of the OARs, and the normal tissue sparing factors. Interestingly, in contrast to standard models, hypo-fractionated and semi-hypo-fractionated schedules (large initial doses with doses tapering off with time) were suggested even with large tumor α/ß values. Numerical results indicate the potential for significant reduction in metastatic risk.


Assuntos
Neoplasias da Mama/radioterapia , Fracionamento da Dose de Radiação , Coração/efeitos da radiação , Pulmão/efeitos da radiação , Modelos Estatísticos , Órgãos em Risco/efeitos da radiação , Neoplasias da Mama/secundário , Feminino , Humanos , Metástase Neoplásica , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med Biol ; 59(12): 3059-79, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24839901

RESUMO

In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.


Assuntos
Neoplasias/patologia , Neoplasias/radioterapia , Radioterapia/métodos , Carga Tumoral/efeitos da radiação , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/radioterapia , Modelos Biológicos , Tolerância a Radiação/efeitos da radiação , Radioterapia/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
3.
Phys Med Biol ; 58(1): 159-67, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23221166

RESUMO

We consider the fractionation problem in radiation therapy. Tumor sites in which the dose-limiting organ at risk (OAR) receives a substantially lower dose than the tumor, bear potential for hypofractionation even if the α/ß-ratio of the tumor is larger than the α/ß-ratio of the OAR. In this work, we analyze the interdependence of the optimal fractionation scheme and the spatial dose distribution in the OAR. In particular, we derive a criterion under which a hypofractionation regimen is indicated for both a parallel and a serial OAR. The approach is based on the concept of the biologically effective dose (BED). For a hypothetical homogeneously irradiated OAR, it has been shown that hypofractionation is suggested by the BED model if the α/ß-ratio of the OAR is larger than α/ß-ratio of the tumor times the sparing factor, i.e. the ratio of the dose received by the tumor and the OAR. In this work, we generalize this result to inhomogeneous dose distributions in the OAR. For a parallel OAR, we determine the optimal fractionation scheme by minimizing the integral BED in the OAR for a fixed BED in the tumor. For a serial structure, we minimize the maximum BED in the OAR. This leads to analytical expressions for an effective sparing factor for the OAR, which provides a criterion for hypofractionation. The implications of the model are discussed for lung tumor treatments. It is shown that the model supports hypofractionation for small tumors treated with rotation therapy, i.e. highly conformal techniques where a large volume of lung tissue is exposed to low but nonzero dose. For larger tumors, the model suggests hyperfractionation. We further discuss several non-intuitive interdependencies between optimal fractionation and the spatial dose distribution. For instance, lowering the dose in the lung via proton therapy does not necessarily provide a biological rationale for hypofractionation.


Assuntos
Fracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Análise Espacial , Humanos , Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação
4.
Phys Med Biol ; 57(5): 1203-16, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22330328

RESUMO

We conduct a theoretical study of various solution methods for the adaptive fractionation problem. The two messages of this paper are as follows: (i) dynamic programming (DP) is a useful framework for adaptive radiation therapy, particularly adaptive fractionation, because it allows us to assess how close to optimal different methods are, and (ii) heuristic methods proposed in this paper are near-optimal, and therefore, can be used to evaluate the best possible benefit of using an adaptive fraction size. The essence of adaptive fractionation is to increase the fraction size when the tumor and organ-at-risk (OAR) are far apart (a 'favorable' anatomy) and to decrease the fraction size when they are close together. Given that a fixed prescribed dose must be delivered to the tumor over the course of the treatment, such an approach results in a lower cumulative dose to the OAR when compared to that resulting from standard fractionation. We first establish a benchmark by using the DP algorithm to solve the problem exactly. In this case, we characterize the structure of an optimal policy, which provides guidance for our choice of heuristics. We develop two intuitive, numerically near-optimal heuristic policies, which could be used for more complex, high-dimensional problems. Furthermore, one of the heuristics requires only a statistic of the motion probability distribution, making it a reasonable method for use in a realistic setting. Numerically, we find that the amount of decrease in dose to the OAR can vary significantly (5-85%) depending on the amount of motion in the anatomy, the number of fractions and the range of fraction sizes allowed. In general, the decrease in dose to the OAR is more pronounced when: (i) we have a high probability of large tumor-OAR distances, (ii) we use many fractions (as in a hyper-fractionated setting) and (iii) we allow large daily fraction size deviations.


Assuntos
Neoplasias/radioterapia , Radioterapia/métodos , Algoritmos , Fracionamento da Dose de Radiação , Humanos , Modelos Estatísticos , Modelos Teóricos , Movimento (Física) , Probabilidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...