Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(2): 386-398, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050069

RESUMO

Nerve agents and organophosphates (OP) are neurotoxic chemicals that induce acute seizures, status epilepticus (SE), and mortality. Long-term neurologic and neurodegenerative effects manifest months to years after OP exposure. Current benzodiazepine anticonvulsants are ineffective in preventing such long-term neurobehavioral and neuropathological changes. New and effective anticonvulsants are needed for OP intoxication, especially for mitigating the long-term sequelae after acute exposure. We developed neurosteroids as novel anticonvulsants and neuroprotectants in OP exposure models. In this study, we evaluated the long-term efficacy of novel synthetic neurosteroids in preventing the development of chronic epilepsy and hyperexcitable ictal events in a rat OP model of SE. Rats were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP), and the experimental groups were treated with the synthetic neurosteroid valaxanolone (VX) or lysaxanolone (LX) 40 minutes post-exposure in conjunction with midazolam. Video-electroencephalography was monitored for two months to assess spontaneous recurrent seizures (SRS), epileptiform discharges, interictal spikes, and high-frequency oscillations (HFOs). Within 60 days of DFP exposure, rats developed chronic epilepsy characterized by frequent SRS, epileptiform discharges, and HFOs. LX treatment was associated with a dose-dependent reduction of epilepsy occurrence and overall seizure burden with a significant decrease in SRS and epileptiform discharges. It also significantly reduced the occurrence of epileptic biomarkers of HFOs and interictal spikes, indicating potential disease-modifying activity. Similarly, the neurosteroid analog VX also significantly attenuated SRS, discharges, HFOs, and ictal events. These results demonstrate the long-term protective effects of synthetic neurosteroids in the OP-exposed post-SE model, indicating their disease-modifying potential to prevent epilepsy and ictal abnormalities. SIGNIFICANCE STATEMENT: The effects of nerve agents and organophosphate (OP) exposure are persistent, and survivors suffer from a number of devastating, chronic neurological dysfunctions. Currently, there is no specific therapy for preventing this disastrous impact of OP exposure. We propose synthetic neurosteroids that activate tonic inhibition provide viable options for preventing the long-term neurological effects of OP intoxication. The results from this study reveal the disease-modifying potential of two novel synthetic neurosteroids in preventing epileptogenesis and chronic epileptic seizures after OP-induced SE.


Assuntos
Epilepsia , Agentes Neurotóxicos , Neuroesteroides , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Estado Epiléptico , Ratos , Animais , Neuroesteroides/uso terapêutico , Anticonvulsivantes/efeitos adversos , Organofosfatos/efeitos adversos , Agentes Neurotóxicos/efeitos adversos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Epilepsia/tratamento farmacológico , Eletroencefalografia , Biomarcadores
2.
J Pharmacol Exp Ther ; 388(2): 399-415, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38071567

RESUMO

Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes. Additionally, there are few effective neuroprotectants for mitigating the long-term effects of acute OP intoxication. We have pioneered neurosteroids as novel anticonvulsants and neuroprotectants for OP intoxication and seizures. In this study, we evaluated the efficacy of two novel synthetic, water-soluble neurosteroids, valaxanolone (VX) and lysaxanolone (LX), in combating the long-term behavioral and neuropathological impairments caused by acute OP intoxication and SE. Animals were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP) and were treated with VX or LX in addition to midazolam at 40 minutes postexposure. The extent of neurodegeneration, along with various behavioral and memory deficits, were assessed at 3 months postexposure. VX significantly reduced deficits of aggressive behavior, anxiety, memory, and depressive-like traits in control (DFP-exposed, midazolam-treated) animals; VX also significantly prevented the DFP-induced chronic loss of NeuN(+) principal neurons and PV(+) inhibitory neurons in the hippocampus and other regions. Additionally, VX-treated animals exhibited a reduced inflammatory response with decreased GFAP(+) astrogliosis and IBA1(+) microgliosis in the hippocampus, amygdala, and other regions. Similarly, LX showed significant improvement in behavioral and memory deficits, and reduced neurodegeneration and cellular neuroinflammation. Together, these results demonstrate the neuroprotectant effects of the novel synthetic neurosteroids in mitigating the long-term neurologic dysfunction and neurodegeneration associated with OP exposure. SIGNIFICANCE STATEMENT: Survivors of nerve agents and organophosphate (OP) exposures suffer from long-term neurological deficits. Currently, there is no specific drug therapy for mitigating the impact of OP exposure. However, novel synthetic neurosteroids that activate tonic inhibition provide a viable option for treating OP intoxication. The data from this study indicates the neuroprotective effects of synthetic, water-soluble neurosteroids for attenuation of long-term neurological deficits after OP intoxication. These findings establish valaxanolone and lysaxanolone as potent and efficacious neuroprotectants suitable for injectable dosing.


Assuntos
Agentes Neurotóxicos , Fármacos Neuroprotetores , Neuroesteroides , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroesteroides/uso terapêutico , Isoflurofato/farmacologia , Midazolam/farmacologia , Doenças Neuroinflamatórias , Encéfalo , Agentes Neurotóxicos/farmacologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/tratamento farmacológico , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/farmacologia , Transtornos da Memória/patologia
3.
J Pharmacol Exp Ther ; 388(2): 416-431, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977810

RESUMO

Children are highly vulnerable to the neurotoxic effects of organophosphates (OPs), which can cause neuronal developmental defects, including intellectual disability, autism, epilepsy, and related comorbidities. Unfortunately, no specific pediatric OP neurotoxicity model currently exists. In this study, we developed and characterized a pediatric rat model of status epilepticus (SE) induced by the OP diisopropylfluorophosphate (DFP) and examined its impact on long-term neurological outcomes. Postnatal day 21 rats were exposed to a DFP regimen with standard antidotes. Progressive behavioral deteriorations were assessed over a three-month period. Development of epileptic seizures, ictal discharges, high-frequency oscillations (HFOs), and interictal spikes were monitored by video-electroencephalography recordings. Histology-stereology analysis was performed to assess neurodegeneration, neuroinflammation, and morphologic abnormalities. DFP-exposed, post-SE animals exhibited significantly elevated levels of anxiety and depression than age-matched controls at 1, 2, and 3 months post-exposure. DFP-exposed animals displayed aggressive behavior and a marked decline in object recognition memory, as well as prominent impairment in spatial learning and memory. DFP-exposed animals had striking electrographic abnormalities with the occurrence of displayed epileptic seizures, ictal discharges, HFOs, and interictal spikes, suggesting chronic epilepsy. Neuropathological analysis showed substantially fewer principal neurons and inhibitory interneurons with a marked increase in reactive microglia and neuroinflammation in the hippocampus and other brain regions. DFP-exposed animals also exhibited mossy fiber sprouting indicating impaired network formations. Long-term epileptic seizures and neuropsychiatric functional deficits induced by DFP were consistent with neuropathological defects. Collectively, this pediatric model displays many hallmarks of chronic sequelae reminiscent of children exposed to OPs, suggesting that it will be a valuable tool for investigating pathologic mechanisms and potential treatment strategies to attenuate long-term OP neurotoxicity. SIGNIFICANCE STATEMENT: Millions of children are exposed to organophosphates (OPs) used in agriculture or chemical incidents. This study investigated the long-term impact of neonatal exposure to the OP chemical diisopropylfluorophosphate (DFP) on neurobehavioral and neurodevelopmental outcomes in adulthood. DFP exposure caused long-lasting behavioral abnormalities, epileptic seizures, and bilateral brain defects with an array of neurological sequelae seen in children's OP neurotoxicity. Thus, this model provides a novel tool to explore therapeutic interventions that mitigate long-term neurotoxic effects of children exposed to OP-induced seizures and status epilepticus.


Assuntos
Epilepsia , Estado Epiléptico , Humanos , Criança , Ratos , Animais , Isoflurofato/toxicidade , Organofosfatos/efeitos adversos , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Modelos Animais de Doenças
4.
J Pharmacol Exp Ther ; 388(2): 313-324, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37770202

RESUMO

Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage. Current therapies for OP poisoning and SE do not consider neuronal variations between male and female brains. Therefore, we investigated sex-dependent differences in electrographic seizure activity and neuronal injury using the DFP model of refractory SE in rats. Electroencephalogram recordings were used to monitor DFP-induced SE, and the extent of brain injury was determined using fluoro-jade-B staining to detect cellular necrosis. After DFP exposure, we observed striking sex-dependent differences in SE and seizure activity patterns as well as protective responses to midazolam treatment. Following acute DFP exposure, male animals displayed more severe SE with intense epileptiform spiking and greater mortality than females. In contrast, we observed significantly more injured cells and cellular necrosis in the hippocampus and other brain regions in females than in males. We also observed extensive neuronal injury in the somatosensory cortex of males. The anticonvulsant effect of midazolam against SE was limited in this model and found to be similar in males and females. However, unlike males, females exhibited substantially more protection against neuronal damage after midazolam treatment. Overall, these results demonstrate significant sex-dependent differences in DFP-induced refractory SE and neuronal damage patterns, suggesting that it may be possible to develop sex-specific neuroprotective strategies for OP intoxication and refractory SE. SIGNIFICANCE STATEMENT: Sex-dependent differences in neurotoxicity and status epilepticus (SE) are key biological variables after organophosphate (OP) exposure. Here, we investigated sex-dependent differences in SE and brain injury after acute diisopropylfluorophosphate exposure. Male rats had more severe SE and less survival than females, while females had more neuronal damage. Females had more neuroprotection to midazolam than males, while both sexes had similar but partial anticonvulsant effects. These findings suggest that a sex-specific therapeutic approach may prevent neurological complications of OP-induced SE.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Estado Epiléptico , Humanos , Feminino , Masculino , Ratos , Animais , Benzodiazepinas/farmacologia , Anticonvulsivantes/efeitos adversos , Midazolam/farmacologia , Isoflurofato/farmacologia , Organofosfatos/farmacologia , Caracteres Sexuais , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Encéfalo , Intoxicação por Organofosfatos/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Necrose/tratamento farmacológico
5.
Exp Neurol ; 360: 114294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36493860

RESUMO

Epilepsy is a serious neurological disorder associated with recurrent and unpredictable seizures and extensive neuropsychiatric comorbidities. There is no cure for epilepsy, and over one third of epileptic patients have been diagnosed with drug-refractory epilepsy, indicating the critical need for novel antiseizure medications (ASMs). Cannabidiol (CBD) has been shown to decrease seizures in pediatric epilepsies, such as Dravet and Lennox-Gastaut syndromes; however, it has not been rigorously tested for adult seizures or in models of refractory focal epilepsy. Although the exact mechanism is unknown, it is likely to act in a way that is unique to certain GABA-A receptor-modulating drugs, such as neurosteroids and benzodiazepines. In this study, we sought to determine the adjunct antiseizure activity of a clinical CBD product in an adult 6-Hz model of focal refractory epilepsy. CBD was evaluated alone in both a dose-response and time-course manner and in an adjunct combination with two ASMs ganaxolone (neurosteroid) and midazolam (benzodiazepine) against 6-Hz-induced refractory focal onset, generalized seizures. In pharmacological studies, CBD produced dose-dependent protection against seizures (ED50, 53 mg/kg, i.p.) without any side effects. CBD significantly reduced both electrographic activity and behavioral ictal responses with no apparent sex differences. CBD was evaluated in an isobologram design in conjunction with ganaxolone or midazolam at three standard ratios (1:1, 1:3, 3:1). Isobolographic analysis shows the combination regimens of CBD + ganaxolone and CBD + midazolam exerted combination index of 0.313 and 0.164, indicating strong synergism for seizure protection, with little to no toxicity. Together, these results demonstrate the therapeutic potential of CBD monotherapy and as an adjunct therapy for adult focal refractory epilepsy in combination with GABAergic ASMs.


Assuntos
Canabidiol , Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Neuroesteroides , Humanos , Adulto , Feminino , Masculino , Criança , Canabidiol/uso terapêutico , Neuroesteroides/uso terapêutico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Benzodiazepinas/uso terapêutico , Anticonvulsivantes/uso terapêutico , Midazolam/uso terapêutico , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Epilepsias Parciais/tratamento farmacológico
6.
Exp Neurol ; 359: 114240, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216124

RESUMO

Presently there is no drug therapy for curing epilepsy. Despite many advancements in epilepsy research, nearly 30% of people with epilepsy remain refractory to current antiseizure medications (ASM). Cannabidiol (CBD) has recently been approved as an ASM for pediatric refractory seizures, but it has not been widely tested for adult epileptogenesis and focal onset seizures. In this study, we investigated the efficacy of the FDA-approved CBD in controlling epileptogenesis and complex focal onset seizures using the mouse kindling model of human temporal lobe epilepsy. We also tested combination regimens of CBD with other ASMs. The two primary outcome measures were disease modification and suppression of generalized seizures. In the epileptogenesis study, CBD had a striking effect in attenuating kindling development, with a dose-dependent decrease in behavioral and electrographic seizure activity. In the retention study, mice previously treated with CBD had significantly reduced overall seizure burden, suggesting disease modification. In a fully-kindled seizure study, CBD produced rapid and atypical U-shaped dose-dependent protection against generalized seizures (ED50, 52 mg/kg, i.p.). In a time-course study, CBD showed a maximal protective effect within 1 h of injection, and it declined within 4 h with a biphasic response. In the combination study, CBD produced synergistic/ additive protection when given with midazolam and ganaxolone but not with tiagabine, indicating its strong potential as an adjunct ASM. Finally, the protective effects of CBD were not associated with motor and functional impairments. These preclinical findings demonstrate the potential of adjunct CBD for controlling adult complex focal onset seizure conditions.


Assuntos
Canabidiol , Epilepsia do Lobo Temporal , Epilepsia , Humanos , Criança , Camundongos , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Modelos Animais de Doenças
7.
Curr Protoc ; 2(6): e447, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35671160

RESUMO

Traumatic brain injury (TBI) is a leading cause of epilepsy in military persons and civilians. Spontaneous recurrent seizures (SRSs) occur in the months or years following the injury, which is commonly referred to as post-traumatic epilepsy (PTE). Currently, there is no effective treatment or cure for PTE; therefore, there is a critical need to develop animal models to help further understand and assess mechanisms and interventions related to TBI-induced epilepsy. Despite many attempts to induce PTE in animals, success has been limited due to a lack of consistent SRSs after TBI. We present a comprehensive protocol to induce PTE after contusion brain injury in mice, which exhibit robust SRSs along with neurodegeneration and neuroinflammation. This article provides a complete set of protocols for injury, outcomes, troubleshooting, and data analysis. Our broad profiling of a TBI mouse reveals features of progressive, long-lasting epileptic activity, hippocampal sclerosis, and comorbid mood and memory deficits. Overall, the PTE mouse shows striking consistency in recapitulating major hallmark features of human PTE. This mouse model will be helpful in assessing mechanisms of and interventions for TBI-induced epileptogenesis, epilepsy, and neuropsychiatric dysfunction. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Inducing controlled cortical impact injuries Support Protocol: Creating the custom domed camp Basic Protocol 2: Recording long-term video-EEG signals Basic Protocol 3: Analyzing video-EEG recordings.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Generalizada , Epilepsia Pós-Traumática , Epilepsia , Animais , Dano Encefálico Crônico/complicações , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Generalizada/complicações , Epilepsia Pós-Traumática/etiologia , Camundongos , Convulsões/etiologia
8.
MAbs ; 13(1): 1976705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34592895

RESUMO

The prolonged in vivo persistence of antibodies results in high background and poor contrast during their use as molecular imaging agents for positron emission tomography (PET). We have recently described a class of engineered Fc fusion proteins that selectively deplete antigen-specific antibodies without affecting the levels of antibodies of other specificities. Here, we demonstrate that these Fc fusions (called Seldegs, for selective degradation) can be used to clear circulating, radiolabeled HER2-specific antibody during diagnostic imaging of HER2-positive tumors in mice. The analyses show that Seldegs have considerable promise for the reduction of whole-body exposure to radiolabel and improvement of contrast during PET.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Animais , Anticorpos , Linhagem Celular Tumoral , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2
9.
Nat Commun ; 10(1): 793, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770826

RESUMO

The resolution of an imaging system is a key property that, despite many advances in optical imaging methods, remains difficult to define and apply. Rayleigh's and Abbe's resolution criteria were developed for observations with the human eye. However, modern imaging data is typically acquired on highly sensitive cameras and often requires complex image processing algorithms to analyze. Currently, no approaches are available for evaluating the resolving capability of such image processing algorithms that are now central to the analysis of imaging data, particularly location-based imaging data. Using methods of spatial statistics, we develop a novel algorithmic resolution limit to evaluate the resolving capabilities of location-based image processing algorithms. We show how insufficient algorithmic resolution can impact the outcome of location-based image analysis and present an approach to account for algorithmic resolution in the analysis of spatial location patterns.


Assuntos
Algoritmos , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Processamento de Sinais Assistido por Computador , Animais , Calibragem , Linhagem Celular , Diagnóstico por Imagem/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Microscopia de Fluorescência/normas , Padrões de Referência , Reprodutibilidade dos Testes
10.
Traffic ; 19(4): 273-284, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437282

RESUMO

Despite the rapidly expanding use of antibody-based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody-opsonized tumor cells is limited. Here we report the formation of a phagosome-associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2-positive cancer cells in the presence of the HER2-specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome. Furthermore, the size of the phagosome-associated vacuole is increased by inhibition of the mTOR pathway. Collectively, the identification of this vacuolar compartment has implications for understanding the subcellular trafficking processes leading to the destruction of phagocytosed, antibody-opsonized cancer cells by macrophages.


Assuntos
Macrófagos/metabolismo , Fagocitose/imunologia , Fagossomos/metabolismo , Vacúolos/metabolismo , Animais , Anticorpos/imunologia , Humanos , Lisossomos/metabolismo , Fusão de Membrana/fisiologia , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Fagocitose/fisiologia , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...