Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759828

RESUMO

Designing of new generation offshore wind turbine blades is a great challenge as size of blades are getting larger (typically larger than 100 m). Structural Health Monitoring (SHM), which uses embedded Fiber Optics Sensors (FOSs), is incorporated in critical stressed zones such as trailing edges and spar webs. When FOS are embedded within composites, a 'penny shape' region of resin concentration is formed around the section of FOS. The size of so-formed defects are depending on diameter of the FOS. Penny shape defects depend of FOS diameter. Consequently, care must be given to embed in composites reliable sensors that are as small as possible. The way of FOS placement within composite plies is the second critical issue. Previous research work done in this field (1) investigated multiple linear FOS and sinusoidal FOS placement, as well. The authors pointed out that better structural coverage of the critical zones needs some new concepts. Therefore, further advancement is proposed in the current article with novel FOS placement (anti-phasic sinusoidal FOS placement), so as to cover more critical area and sense multi-directional strains, when the wind blade is in-use. The efficiency of the new positioning is proven by numerical and experimental study.

2.
Sensors (Basel) ; 17(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333117

RESUMO

The fiber optic sensors (FOSs) are commonly used for large-scale structure monitoring systems for their small size, noise free and low electrical risk characteristics. Embedded fiber optic sensors (FOSs) lead to micro-damage in composite structures. This damage generation threshold is based on the coating material of the FOSs and their diameter. In addition, embedded FOSs are aligned parallel to reinforcement fibers to avoid micro-damage creation. This linear positioning of distributed FOS fails to provide all strain parameters. We suggest novel sinusoidal sensor positioning to overcome this issue. This method tends to provide multi-parameter strains in a large surface area. The effectiveness of sinusoidal FOS positioning over linear FOS positioning is studied under both numerical and experimental methods. This study proves the advantages of the sinusoidal positioning method for FOS in composite material's bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...