Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082950

RESUMO

Magnetic Resonance (MR) images suffer from various types of artifacts due to motion, spatial resolution, and under-sampling. Conventional deep learning methods deal with removing a specific type of artifact, leading to separately trained models for each artifact type that lack the shared knowledge generalizable across artifacts. Moreover, training a model for each type and amount of artifact is a tedious process that consumes more training time and storage of models. On the other hand, the shared knowledge learned by jointly training the model on multiple artifacts might be inadequate to generalize under deviations in the types and amounts of artifacts. Model-agnostic meta-learning (MAML), a nested bi-level optimization framework is a promising technique to learn common knowledge across artifacts in the outer level of optimization, and artifact-specific restoration in the inner level. We propose curriculum-MAML (CMAML), a learning process that integrates MAML with curriculum learning to impart the knowledge of variable artifact complexity to adaptively learn restoration of multiple artifacts during training. Comparative studies against Stochastic Gradient Descent and MAML, using two cardiac datasets reveal that CMAML exhibits (i) better generalization with improved PSNR for 83% of unseen types and amounts of artifacts and improved SSIM in all cases, and (ii) better artifact suppression in 4 out of 5 cases of composite artifacts (scans with multiple artifacts).Clinical relevance- Our results show that CMAML has the potential to minimize the number of artifact-specific models; which is essential to deploy deep learning models for clinical use. Furthermore, we have also taken another practical scenario of an image affected by multiple artifacts and show that our method performs better in 80% of cases.


Assuntos
Aprendizado Profundo , Artefatos , Imageamento por Ressonância Magnética/métodos , Currículo , Movimento (Física)
2.
Comput Med Imaging Graph ; 91: 101942, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34087612

RESUMO

Deep learning networks have shown promising results in fast magnetic resonance imaging (MRI) reconstruction. In our work, we develop deep networks to further improve the quantitative and the perceptual quality of reconstruction. To begin with, we propose reconsynergynet (RSN), a network that combines the complementary benefits of independently operating on both the image and the Fourier domain. For a single-coil acquisition, we introduce deep cascade RSN (DC-RSN), a cascade of RSN blocks interleaved with data fidelity (DF) units. Secondly, we improve the structure recovery of DC-RSN for T2 weighted Imaging (T2WI) through assistance of T1 weighted imaging (T1WI), a sequence with short acquisition time. T1 assistance is provided to DC-RSN through a gradient of log feature (GOLF) fusion. Furthermore, we propose perceptual refinement network (PRN) to refine the reconstructions for better visual information fidelity (VIF), a metric highly correlated to radiologist's opinion on the image quality. Lastly, for multi-coil acquisition, we propose variable splitting RSN (VS-RSN), a deep cascade of blocks, each block containing RSN, multi-coil DF unit, and a weighted average module. We extensively validate our models DC-RSN and VS-RSN for single-coil and multi-coil acquisitions and report the state-of-the-art performance. We obtain a SSIM of 0.768, 0.923, and 0.878 for knee single-coil-4x, multi-coil-4x, and multi-coil-8x in fastMRI, respectively. We also conduct experiments to demonstrate the efficacy of GOLF based T1 assistance and PRN.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1584-1587, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018296

RESUMO

High spatial resolution of Magnetic Resonance images (MRI) provide rich structural details to facilitate accurate diagnosis and quantitative image analysis. However the long acquisition time of MRI leads to patient discomfort and possible motion artifacts in the reconstructed image. Single Image Super-Resolution (SISR) using Convolutional Neural networks (CNN) is an emerging trend in biomedical imaging especially Magnetic Resonance (MR) image analysis for image post processing. An efficient choice of SISR architecture is required to achieve better quality reconstruction. In addition, a robust choice of loss function together with the domain in which these loss functions operate play an important role in enhancing the fine structural details as well as removing the blurring effects to form a high resolution image. In this work, we propose a novel combined loss function consisting of an L1 Charbonnier loss function in the image domain and a wavelet domain loss function called the Isotropic Undecimated Wavelet loss (IUW loss) to train the existing Laplacian Pyramid Super-Resolution CNN. The proposed loss function was evaluated on three MRI datasets - privately collected Knee MRI dataset and the publicly available Kirby21 brain and iSeg infant brain datasets and on benchmark SISR datasets for natural images. Experimental analysis shows promising results with better recovery of structure and improvements in qualitative metrics.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Redes Neurais de Computação
4.
Artigo em Inglês | MEDLINE | ID: mdl-25570928

RESUMO

Axonal transport velocities are obtained from spatio-temporal maps called kymographs developed from time-lapse confocal microscopy movies of neurons. The kymographs of axonal transport of C.elegans worms are much noisier due to in vivo nature of imaging. Existing methodologies for velocity measurement include laborious manual delineation of axonal movement ridges on the kymographs and thereby determining particle velocities from the slopes of ridges marked. Manual kymograph analysis is not only time consuming but also prone to human errors in marking the ridges. An automated algorithm to extract all the ridges and determine the velocities without significant manual efforts is highly preferred. Not many methods are currently available for such biological studies. We present an almost automated method based on information fusion using LDA classifier, morphological image processing and spline fitting for determining axonal transport velocities. Experimental analysis of 50 kymographs shows considerable reduction of 89% in time taken with manual intervention of 10.83%. Comparitive study with the results of two of the previous literatures shows that our algorithm performs better.


Assuntos
Algoritmos , Transporte Axonal/fisiologia , Caenorhabditis elegans/fisiologia , Quimografia/métodos , Animais , Axônios/fisiologia , Processamento de Imagem Assistida por Computador , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...