Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(6): 5101-5112, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38314693

RESUMO

Lateral proton transport (PT) on the surface of biological membranes is a fundamental biochemical process in the bioenergetics of living cells, but a lack of available experimental techniques has resulted in a limited understanding of its mechanism. Here, we present a molecular protonics experimental approach to investigate lateral PT across membranes by measuring long-range (70 µm) lateral proton conduction via a few layers of lipid bilayers in a solid-state-like environment, i.e., without having bulk water surrounding the membrane. This configuration enables us to focus on lateral proton conduction across the surface of the membrane while decoupling it from bulk water. Hence, by controlling the relative humidity of the environment, we can directly explore the role of water in the lateral PT process. We show that proton conduction is dependent on the number of water molecules and their structure and on membrane composition, where we explore the role of the headgroup, the tail saturation, the membrane phase, and membrane fluidity. The measured PT as a function of temperature shows an inverse temperature dependency, which we explain by the desorption and adsorption of water molecules into the solid membrane platform. We explain our findings by discussing the role of percolating hydrogen bonding within the membrane structure in a Grotthuss-like mechanism.


Assuntos
Fenômenos Bioquímicos , Prótons , Membrana Celular , Bicamadas Lipídicas/química , Água/química
2.
J Phys Chem B ; 126(33): 6331-6337, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35959566

RESUMO

The dynamic control of pH-responsive systems is at the heart of many natural and artificial processes. Here, we use photoacids, molecules that dissociate only in their excited state and transfer their proton to nearby proton acceptors, for the dynamic control of processes. A problem arises when there is a need to protonate highly acidic acceptors. We solve this problem using super photoacids that have an excited-state pKa of -8, thus enabling them to protonate very weak proton acceptors. The process that we target is the light-triggered self-propulsion of droplets, initiated by an excited-state proton transfer (ESPT) from a super photoacid donor to a surfactant acceptor situated on the surface of the droplet with a pKa of ∼0. We first confirm using steady-state and time-resolved spectroscopy that a super photoacid can undergo ESPT to the acidic surfactant, whereas a "regular" photoacid cannot. Next, we show self-propulsion of the droplet upon irradiating the solvated super photoacid. We further confirm the protonation of the surfactant on the surface of the droplet using transient surface tension measurements. Our system is the first example of the application of super photoacids to control dynamic processes and opens new possibilities in the field of light-triggered dynamic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...