Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146738

RESUMO

COVID-19 has been in the headlines for the past two years. Diagnosing this infection with minimal false rates is still an issue even with the advent of multiple rapid antigen tests. Enormous data are being collected every day that could provide insight into reducing the false diagnosis. Machine learning (ML) and deep learning (DL) could be the way forward to process these data and reduce the false diagnosis rates. In this study, ML and DL approaches have been applied to the data set collected using an ultra-fast COVID-19 diagnostic sensor (UFC-19). The ability of ML and DL to specifically detect SARS-CoV-2 signals against SARS-CoV, MERS-CoV, Human CoV, and Influenza was investigated. UFC-19 is an electrochemical sensor that was used to test these virus samples and the obtained current response dataset was used to diagnose SARS-CoV-2 using different algorithms. Our results indicate that the convolution neural networks algorithm could diagnose SARS-CoV-2 samples with a sensitivity of 96.15%, specificity of 98.17%, and accuracy of 97.20%. Combining this DL model with the existing UFC-19 could selectively identify SARS-CoV-2 presence within two minutes.


Assuntos
COVID-19 , Aprendizado Profundo , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade
2.
Biosensors (Basel) ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884326

RESUMO

The severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2) has spread globally and there is still a lack of rapid detection techniques for SARS-CoV-2 surveillance in indoor air. In this work, two test rigs were developed that enable continuous air monitoring for the detection of SARS-CoV-2 by sample collection and testing. The collected samples from simulated SARS-CoV-2 contaminated air were analyzed using an ultra-fast COVID-19 diagnostic sensor (UFC-19). The test rigs utilized two air sampling methods: cyclone-based collection and internal impaction. The former achieved a limit of detection (LoD) of 0.004 cp/L in the air (which translates to 0.5 cp/mL when tested in aqueous solution), lower than the latter with a limit of 0.029 cp/L in the air. The LoD of 0.5 cp/mL using the UFC-19 sensor in aqueous solution is significantly lower than the best-in-class assays (100 cp/mL) and FDA EUA RT-PCR test (6250 cp/mL). In addition, the developed test rig provides an ultra-fast method to detect airborne SARS-CoV-2. The required time to test 250 L air is less than 5 min. While most of the time is consumed by the air collection process, the sensing is completed in less than 2 s using the UFC-19 sensor. This method is much faster than both the rapid antigen (<20 min) and RT-PCR test (<90 min).


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , COVID-19/diagnóstico , Humanos , Limite de Detecção , SARS-CoV-2 , Sensibilidade e Especificidade
3.
Chem Eng J ; 411: 128453, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942011

RESUMO

A standalone electrochemical method for detecting the bacterium Escherichia coli in water was developed using a nickel electrode and no biorecognition element. Electric current responses from different E. coli concentrations were recorded based on their interaction with a locally formed electrocatalyst. A rotating disk electrode was used to minimize the mass transport limitations at the interface. Results from experiments with the rotating disk electrode also paved the way for hypothesizing the detection mechanism. The operating conditions were established for sensing the electric current responses in the presence of E. coli. The least-squares linear regression model was fit to the data obtained from currents of some known E. coli concentrations. This probe had a detection limit in the order of 104 CFU/ml. The response time to detect the presence/absence of E. coli was less than half a second, while the total assay time, including quantification of its concentration, was 10 min. The electric current response from a solution mixed with E. coli and S. aureus showed current similar to E. coli only solution indicating the specificity of the sensor to respond to signals from E. coli. This electrochemical microbial sensor's uniqueness lies in its ability to rapidly detect E. coli by forming the catalyst locally on demand without the attachment of biorecognition elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA