Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(24): e2200589, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35678244

RESUMO

Simultaneous detection of multiple disease biomarkers in unprocessed whole blood is considered the gold standard for accurate clinical diagnosis. Here, this study reports the development of a 4-plex electrochemical (EC) immunosensor with on-chip negative control capable of detecting a range of biomarkers in small volumes (15 µL) of complex biological fluids, including serum, plasma, and whole blood. A framework for fabricating and optimizing multiplexed sandwich immunoassays is presented that is enabled by use of EC sensor chips coated with an ultra-selective, antifouling, and nanocomposite coating. Cyclic voltammetry evaluation of sensor performance is carried out by monitoring the local precipitation of an electroactive product generated by horseradish peroxidase linked to a secondary antibody. EC immunosensors demonstrate high sensitivity and specificity without background signal with a limit of detection in single-digit picogram per milliliter in multiple complex biological fluids. These multiplexed immunosensors enable the simultaneous detection of four different biomarkers in plasma and whole blood with excellent sensitivity and selectivity. This rapid and cost-effective biosensor platform can be further adapted for use with different high affinity probes for any biomarker, and thereby create for a new class of highly sensitive and specific multiplexed diagnostics.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoensaio , Biomarcadores , Anticorpos
2.
ACS Omega ; 6(9): 6031-6040, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718694

RESUMO

This article discusses the emergent biosensor technology focused on continuous biosensing of metabolites by non-invasive sampling of body fluids emphasized on physiological monitoring in mobility-constrained populations, resource-challenged settings, and harsh environments. The boom of innovative ideas and endless opportunities in healthcare technologies has transformed traditional medicine into a sustainable link between medical practitioners and patients to provide solutions for faster disease diagnosis. The future of healthcare is focused on empowering users to manage their own health. The confluence of big data and predictive analysis and the internet of things (IoT) technology have shown the potential of converting the abundant health profile data amassed from medical diagnosis of patients into useable information, whilst allowing caregivers to provide suitable treatment plans. The implementation of the IoT technology has opened up advanced approaches in real-time, continuous, remote monitoring of patients. Wearable, point-of-care biosensors are the future roadmap to providing direct, real-time information of health status to the user and medical professionals in this digitized era.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...