Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38819452

RESUMO

The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 µg/mL) than gram-negative bacteria (201.46-236.19 µg/mL). Microscopic visualization inferred that at 250 µg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.

2.
Chemosphere ; 353: 141541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423149

RESUMO

Plastics are a vital component of our daily lives in the contemporary globalization period; they are present in all facets of modern life. Because the bulk of synthetic plastics utilized in the market are non-biodegradable by nature, the issues associated with their contamination are unavoidable in an era dominated by polymers. Polyethylene terephthalate (PET), which is extensively used in industries such as automotive, packaging, textile, food, and beverages production represents a major share of these non-biodegradable polymer productions. Given its extensive application across various sectors, PET usage results in a considerable amount of post-consumer waste, majority of which require disposal after a certain period. However, the recycling of polymeric waste materials has emerged as a prominent topic in research, driven by growing environmental consciousness. Numerous studies indicate that products derived from polymeric waste can be converted into a new polymeric resource in diverse sectors, including organic coatings and regenerative medicine. This review aims to consolidate significant scientific literatures on the recycling PET waste for electrochemical device applications. It also highlights the current challenges in scaling up these processes for industrial application.


Assuntos
Plásticos , Polietilenotereftalatos , Reciclagem , Polímeros , Embalagem de Produtos
3.
Arch Microbiol ; 204(7): 386, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689687

RESUMO

The present study was undertaken to biosynthesize zinc oxide nanoparticles (ZnONPs) using a mangrove-associated actinobacterium Streptomyces olivaceus (MSU3) under in vitro conditions. The synthesized ZnONPs were structurally characterized through UV, FT-IR, TG-DTA, XRD, SEM and EDX analysis. Analysis of biosynthesized ZnONPs in UV-Vis spectroscopy showed presence of functional groups between the wavelengths 325 and 380 nm. FT-IR analysis showed the functional groups, such as halo bromide (C-Br), alkyne (C≡C), carboxylic acid (O-H), nitro (N-O), fluoro (C-F), alkene (C=C) and aromatic (R-C-H) groups, respectively, within the wave numbers between 614.30 and 3074.41 cm-1. The crystalline poly-dispersed quasi spherical nature of ZnONPs expressed the average particle size of 37.9 nm with the 2θ values of 11.802-37.885°. Antibacterial activity of ZnONPs showed pronounced inhibitory zone (25 mm) and least MIC and MBC values (125 and 250 µg ml-1) against Escherchia sp. In the antifouling study, ZnONPs strongly inhibited byssal thread formation in mussel Perna indica and recorded LC50 value of 424.47 µg ml-1. Mollusc foot adherence assay inferred that the ZnONPs effectively inhibited settlement of limpet Patella vulgata and showed minimal fouling (26.43%) at 350 µg ml-1 and recorded LC50 value of 218.77 µg ml-1. Results of anticrustacean assay depicted that, ZnONPs had registered LC50 value of 676.08 µg ml-1 against Artemia salina nauplii. From this study, it could be concluded that an eco-friendly approach could be used to open a new avenue for biosynthesis of ZnONPs from a mangrove associated actinobacterium S. olivaceus (MSU3) in antifouling studies.


Assuntos
Antineoplásicos , Incrustação Biológica , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Antineoplásicos/farmacologia , Incrustação Biológica/prevenção & controle , Nanopartículas Metálicas/química , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Streptomyces , Óxido de Zinco/química , Óxido de Zinco/farmacologia
4.
Environ Monit Assess ; 187(9): 562, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26255268

RESUMO

The present study was undertaken to investigate the diversity of mangrove-associated bacterial genera at Manakudy estuary, Southwest coast of India. The root and rhizosphere sediments of both mangrove and their associated plants were collected from chosen area. Results inferred that the maximum nutrients, THB density, and diversity indices were recorded in rhizosphere and root sample of Avicennia officinalis. Altogether, 258 bacterial strains were isolated from the chosen mangrove samples and screened for nitrogen fixing and phosphate solubilizing ability. Screened result inferred that, 36.43 % isolates had nitrogen fixing and 29.45 % isolates had phosphate solubilizing ability. Here, the genus Bacillus spp. (21.71 %) was the most dominant genera. The bacterial diversity indices, i.e., univariate analysis showed remarkable variation between the chosen samples; however, maximum diversity indices was registered by rhizosphere and root sample of A. officinalis. The 95 % confidence interval and ellipse showed that samples were well mendacious within AvTD and VarTD. Likewise, the multivariate analysis like similarity percentage was good discriminator from 16.64 to 100 % by Bray-Curtis dissimilarity. The prinicipal component analysis (PCA) showed marked variation between the tested bacterial communities. Cluster analysis and non-metric multi-dimensional scaling (MDS) were grouped by Bray-Curtis similarity index which strongly evidence that the rhizosphere and root samples of A. officinalis were highly diversified in the study area.


Assuntos
Avicennia/microbiologia , Bactérias/metabolismo , Biodiversidade , Monitoramento Ambiental/estatística & dados numéricos , Sedimentos Geológicos/microbiologia , Rizosfera , Avicennia/metabolismo , Bactérias/isolamento & purificação , Análise por Conglomerados , Monitoramento Ambiental/métodos , Índia , Nitrogênio/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/microbiologia , Análise de Componente Principal , Especificidade da Espécie
5.
Ecotoxicol Environ Saf ; 89: 231-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23294637

RESUMO

The present study evaluated reproductive toxicity and antifouling activity of methanolic extract of seagrass Syringodium isoetifolium (25 µg/ml) relative to the conventional antifoulant, tributyltin (TBT; 100 ng/l) on the ovarian development of the brown mussel Perna indica. Gonado Somatic Index (GSI) and Digestive Gland Index (DGI) of TBT exposed mussels decreased in comparison with mussels exposed to S. isoetifolium extract. Interestingly, mussels treated with S. isoetifolium showed normal cellular architecture in gills, digestive gland, muscle and ovary. However, TBT increased interfilamental space and fusion of the filaments in gills, disruption in the digestive tubules and reduction in basement membrane thickness. Besides in adductor muscle, TBT induced muscle degeneration, and necrotic muscle layer. In ovary, TBT inflicted the fusion of developing oocytes. TBT had significantly retarded the ovarian development and substantially affected the biochemical constituents leading to an impairment of oogenesis as against the null effects noticed from the S. isoetifolium extract treated mussels. On the ground of eco-friendly properties, the seagrass S. isoetifolium could be used as a source for the production of green antifoulant.


Assuntos
Alismatales/química , Metanol/química , Perna (Organismo)/efeitos dos fármacos , Extratos Vegetais/toxicidade , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/fisiologia , Feminino , Brânquias/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Ovário/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...