Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38843105

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a rare and progressive disease, which causes progressive cough, exertional dyspnea, impaired quality of life and death. OBJECTIVES: Bexotegrast (PLN 74809) is an oral, once-daily, investigational drug in development for the treatment of IPF. METHODS: This Phase 2a, multicenter, clinical trial, randomized participants with IPF to receive oral, once daily bexotegrast 40 mg, 80 mg, 160 mg, 320 mg, or placebo, with or without background IPF therapy (pirfenidone or nintedanib), in an approximately 3:1 ratio in each bexotegrast dose cohort, for at least 12 weeks. The primary endpoint was incidence of treatment-emergent adverse events (TEAEs). Exploratory efficacy endpoints included change from baseline in forced vital capacity (FVC); quantitative lung fibrosis (QLF) extent (%) and changes from baseline in fibrosis-related biomarkers. MEASUREMENTS AND MAIN RESULTS: Bexotegrast was well tolerated with similar rates of TEAEs in the pooled bexotegrast and placebo groups (62/89 [69.7%] and 21/31 [67.7%], respectively). Diarrhea was the most common TEAE; most participants with diarrhea also received nintedanib. Bexotegrast treated participants experienced a reduction in FVC decline over 12 weeks vs. placebo, with or without background therapy. A dose-dependent antifibrotic effect of bexotegrast was observed with QLF imaging and a decrease in fibrosis-associated biomarkers was observed with bexotegrast vs. placebo. CONCLUSIONS: Bexotegrast demonstrated a favorable safety and tolerability profile, up to 12 weeks for the doses studied. Exploratory analyses suggest an antifibrotic effect according to FVC, QLF imaging, and circulating levels of fibrosis biomarkers. Clinical trial registration available at www. CLINICALTRIALS: gov, ID: NCT04396756. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
BMJ Open Respir Res ; 10(1)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38007235

RESUMO

INTRODUCTION: Timely diagnosis of interstitial lung disease (ILD) is limited by obstacles in the current patient pathway. Misdiagnosis and delays are common and may lead to a significant burden of diagnostic procedures and worse outcomes. This Delphi survey aimed to identify consensus on the key steps that facilitate the patient journey to an accurate ILD diagnosis and appropriate management in the US. METHODS: A modified Delphi analysis was conducted, comprising three online surveys based on a comprehensive literature search. The surveys spanned five domains (guidelines, community screening, diagnosis, management and specialist referral) and were completed by a panel of US physicians, including primary care physicians and pulmonologists practising in community or academic settings. A priori definitions of consensus agreement were median scores of 2-3 (agree strongly/agree), with an IQR of 0-1 for questions on a 7-point Likert scale from -3 to 3, or ≥80% agreement for binary questions. RESULTS: Forty-nine panellists completed the surveys and 62 statements reached consensus agreement. There was consensus agreement on what should be included in the primary care evaluation of patients with suspected ILD and the next steps following workup. Regarding diagnosis in community pulmonology care, consensus agreement was reached on the requisition and reporting of high-resolution CT scans and the appropriate circumstances for holding multidisciplinary discussions. Additionally, there was consensus agreement on which symptoms and comorbidities should be monitored, the frequency of consultations and the assessment of disease progression. Regarding specialist referral, consensus agreement was reached on which patients should receive priority access to ILD centres and the contents of the referral package. CONCLUSIONS: These findings clarify the most common issues that should merit further evaluation for ILD and help define the steps for timely, accurate diagnosis and appropriate collaborative specialty management of patients with ILD.


Assuntos
Doenças Pulmonares Intersticiais , Médicos , Humanos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/terapia , Comorbidade , Inquéritos e Questionários , Erros de Diagnóstico
3.
Clin Ther ; 45(4): 306-315, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997445

RESUMO

PURPOSE: Real-world studies have reported reduced mortality in patients with idiopathic pulmonary fibrosis (IPF) treated with antifibrotic therapy; however, the initiation or discontinuation of therapy during these studies may have introduced bias. This study investigated the effect of antifibrotic therapy on mortality and other outcomes in patients with IPF using causal inference methodology. METHODS: Data from a multicenter US registry of patients with IPF were used to assess the effect of antifibrotic therapy (nintedanib or pirfenidone) on death, death or lung transplant, respiratory-related hospitalization, and acute worsening of IPF (defined as any health care encounter deemed due to acute worsening of IPF). This study used the Gran method, which accounts for differences in patient characteristics and for treatment initiations and discontinuations during follow-up. The analysis cohort was limited to patients who started antifibrotic therapy on or after the day of enrollment or had never taken it. FINDINGS: Among the 499 patients analyzed, 352 (70.5%) received antifibrotic therapy. Estimated event rates of death at 1 year were 6.6% (95% CI, 6.1-7.1) for treated patients and 10.2% (95% CI, 9.5-10.9) for control patients. There was a numerical reduction in the risk of death (hazard ratio [HR], 0.53; 95% CI, 0.28-1.03; P = 0.060) but numerical increases in risks of respiratory-related hospitalization (HR, 1.88; 95% CI, 0.90-3.92; P = 0.091) and acute worsening of IPF (HR, 1.71; 95% CI, 0.36-8.09; P = 0.496) in treated versus control patients. IMPLICATIONS: Analyses based on causal inference methodology suggest that patients with IPF who receive antifibrotic therapy have improved survival.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/induzido quimicamente , Piridonas
4.
Am J Respir Crit Care Med ; 203(2): 211-220, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721166

RESUMO

Rationale: Usual interstitial pneumonia (UIP) is the defining morphology of idiopathic pulmonary fibrosis (IPF). Guidelines for IPF diagnosis conditionally recommend surgical lung biopsy for histopathology diagnosis of UIP when radiology and clinical context are not definitive. A "molecular diagnosis of UIP" in transbronchial lung biopsy, the Envisia Genomic Classifier, accurately predicted histopathologic UIP.Objectives: We evaluated the combined accuracy of the Envisia Genomic Classifier and local radiology in the detection of UIP pattern.Methods: Ninety-six patients who had diagnostic lung pathology as well as a transbronchial lung biopsy for molecular testing with Envisia Genomic Classifier were included in this analysis. The classifier results were scored against reference pathology. UIP identified on high-resolution computed tomography (HRCT) as documented by features in local radiologists' reports was compared with histopathology.Measurements and Main Results: In 96 patients, the Envisia Classifier achieved a specificity of 92.1% (confidence interval [CI],78.6-98.3%) and a sensitivity of 60.3% (CI, 46.6-73.0%) for histology-proven UIP pattern. Local radiologists identified UIP in 18 of 53 patients with UIP histopathology, with a sensitivity of 34.0% (CI, 21.5-48.3%) and a specificity of 96.9% (CI, 83.8-100%). In conjunction with HRCT patterns of UIP, the Envisia Classifier results identified 24 additional patients with UIP (sensitivity 79.2%; specificity 90.6%).Conclusions: In 96 patients with suspected interstitial lung disease, the Envisia Genomic Classifier identified UIP regardless of HRCT pattern. These results suggest that recognition of a UIP pattern by the Envisia Genomic Classifier combined with HRCT and clinical factors in a multidisciplinary discussion may assist clinicians in making an interstitial lung disease (especially IPF) diagnosis without the need for a surgical lung biopsy.


Assuntos
Genômica/métodos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Marcadores Genéticos , Humanos , Fibrose Pulmonar Idiopática/classificação , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
5.
Lancet Respir Med ; 7(6): 487-496, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948346

RESUMO

BACKGROUND: In the appropriate clinical setting, the diagnosis of idiopathic pulmonary fibrosis (IPF) requires a pattern of usual interstitial pneumonia to be present on high-resolution chest CT (HRCT) or surgical lung biopsy. A molecular usual interstitial pneumonia signature can be identified by a machine learning algorithm in less-invasive transbronchial lung biopsy samples. We report prospective findings for the clinical validity and utility of this molecular test. METHODS: We prospectively recruited 237 patients for this study from those enrolled in the Bronchial Sample Collection for a Novel Genomic Test (BRAVE) study in 29 US and European sites. Patients were undergoing evaluation for interstitial lung disease and had had samples obtained by clinically indicated surgical or transbronchial biopsy or cryobiopsy for pathology. Histopathological diagnoses were made by experienced pathologists. Available HRCT scans were reviewed centrally. Three to five transbronchial lung biopsy samples were collected from all patients specifically for this study, pooled by patient, and extracted for transcriptomic sequencing. After exclusions, diagnostic histopathology and RNA sequence data from 90 patients were used to train a machine learning algorithm (Envisia Genomic Classifier, Veracyte, San Francisco, CA, USA) to identify a usual interstitial pneumonia pattern. The primary study endpoint was validation of the classifier in 49 patients by comparison with diagnostic histopathology. To assess clinical utility, we compared the agreement and confidence level of diagnosis made by central multidisciplinary teams based on anonymised clinical information and radiology results plus either molecular classifier or histopathology results. FINDINGS: The classifier identified usual interstitial pneumonia in transbronchial lung biopsy samples from 49 patients with 88% specificity (95% CI 70-98) and 70% sensitivity (47-87). Among 42 of these patients who had possible or inconsistent usual interstitial pneumonia on HRCT, the classifier showed 81% positive predictive value (95% CI 54-96) for underlying biopsy-proven usual interstitial pneumonia. In the clinical utility analysis, we found 86% agreement (95% CI 78-92) between clinical diagnoses using classifier results and those using histopathology data. Diagnostic confidence was improved by the molecular classifier results compared with histopathology results in 18 with IPF diagnoses (proportion of diagnoses that were confident or provisional with high confidence 89% vs 56%, p=0·0339) and in all 48 patients with non-diagnostic pathology or non-classifiable fibrosis histopathology (63% vs 42%, p=0·0412). INTERPRETATION: The molecular test provided an objective method to aid clinicians and multidisciplinary teams in ascertaining a diagnosis of IPF, particularly for patients without a clear radiological diagnosis, in samples that can be obtained by a less invasive method. Further prospective clinical validation and utility studies are planned. FUNDING: Veracyte.


Assuntos
Algoritmos , Biópsia/estatística & dados numéricos , Fibrose Pulmonar Idiopática/diagnóstico , Aprendizado de Máquina/estatística & dados numéricos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Idoso , Biópsia/métodos , Diagnóstico Diferencial , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
6.
Pulm Ther ; 5(2): 151-163, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32026407

RESUMO

INTRODUCTION: Components of the hedgehog signaling pathway are upregulated in patients with idiopathic pulmonary fibrosis (IPF). Vismodegib, a small-molecule inhibitor of hedgehog signaling, when used in combination with currently available antifibrotic therapy, may be more efficacious than antifibrotics alone. The objective of this study was to evaluate the safety and tolerability of vismodegib plus pirfenidone in patients with IPF. METHODS: Twenty-one patients were enrolled in a phase 1b open-label trial to receive vismodegib 150 mg plus pirfenidone 2403 mg/day once daily. Key endpoints were safety, tolerability, and pharmacokinetics. Exploratory endpoints included change from baseline to week 24 in % predicted forced vital capacity (FVC) and University of California, San Diego Shortness of Breath Questionnaire (UCSD-SOBQ) scores, as well as pharmacodynamic changes in hedgehog biomarker C-X-C motif chemokine ligand 14 (CXCL14). RESULTS: All patients reported at least one treatment-emergent adverse event (AE), most frequently muscle spasms (76.2%). Serious AEs were reported in 14.3% of patients; one event of dehydration was considered related to vismodegib. One patient died due to IPF progression, unrelated to either treatment. More patients discontinued vismodegib than pirfenidone (42.9% vs. 33.3%, respectively). Changes from baseline to week 24 in % predicted FVC and UCSD-SOBQ scores were within known endpoint variability. In contrast to findings in basal cell carcinoma, vismodegib had no effect on circulating CXCL14 levels. CONCLUSION: The safety profile was generally consistent with the known profiles of both drugs, with no new safety signals observed in this small cohort. There was no pharmacodynamic effect on CXCL14 levels. Future development of vismodegib for IPF may be limited due to tolerability issues. TRIAL REGISTRATION: ClinicalTrials.gov NCT02648048. Plain language summary available for this article. FUNDING: F. Hoffmann-La Roche Ltd. and Genentech, Inc.

7.
COPD ; 6(1): 64-75, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19229710

RESUMO

Acute exacerbations of chronic obstructive pulmonary disease (COPD) are responsible for a large proportion of the health care dollar expenditure, morbidity, and mortality related to COPD. Respiratory infections are the most common cause of acute exacerbations, but recent evidence indicates that the importance of respiratory syncytial virus (RSV) infection in COPD is under-appreciated. Improved detection of RSV using techniques based on the polymerase chain reaction accounts for much of the increased recognition of the importance of this virus in COPD patients. Furthermore, COPD patients may be more susceptible to RSV infection, possibly due to RSV-or immune response-induced pulmonary effects that are altered by age, environmental exposures, genetics, COPD itself, or a combination of these. However, although RSV infection occurs throughout life, viral and host factors that place COPD patients at increased risk are unclear. The complexities of RSV effects in COPD present opportunities for research with the goal of developing approaches to selectively modify damaging viral effects (e.g., altered airway function), while retaining beneficial immunity (e.g., clearance of virus) in COPD patients. This review explores the role RSV plays in acute exacerbations of COPD, the potential for RSV disease in chronic stable COPD, and newer concepts in RSV diagnosis, epidemiology, and host defense.


Assuntos
Doença Pulmonar Obstrutiva Crônica/virologia , Infecções por Vírus Respiratório Sincicial/complicações , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Influenza Humana/complicações , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/imunologia
8.
Am J Respir Cell Mol Biol ; 37(6): 720-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17641294

RESUMO

Adenoviral evolution has generated mechanisms to resist host cell defense systems, but the biochemical basis for evasion of multiple antiviral pathways in the airway by adenoviruses is incompletely understood. We hypothesized that adenoviruses modulate airway epithelial responses to type I interferons by altering the levels and activation of specific Janus family kinase-signal transducer and activator of transcription (JAK-STAT) signaling components. In this study, specific effects of adenovirus type 5 (AdV) on selected JAK-STAT signal transduction pathways were identified in human tracheobronchial epithelial cells, with focus on type I interferon-dependent signaling and gene expression. We found that wild-type AdV infection inhibited IFN-alpha-induced expression of antiviral proteins in epithelial cells by blocking phosphorylation of the Stat1 and Stat2 transcription factors that are required for activation of type I interferon-dependent genes. These effects correlated with AdV-induced down-regulation of expression of the receptor-associated tyrosine kinase Jak1 through a decrease in Jak1 mRNA levels. Phosphorylation of Stat3 in response to IL-6 and oncostatin M was also lost in AdV-infected cells, indicating loss of epithelial cell responses to other cytokines that depend on Jak1. In contrast, IL-4- and IL-13-dependent phosphorylation of Stat6 was not affected during AdV infection, indicating that the virus modulates specific signaling pathways, as these Stat6-activating pathways can function independent of Jak1. Taken together, the results indicate that AdV down-regulates host epithelial cell Jak1 to assure inhibition of the antiviral effects of multiple mediators to subvert airway defense responses and establish a productive infection.


Assuntos
Infecções por Adenoviridae/enzimologia , Adenoviridae/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/virologia , Sistema Respiratório/citologia , Sistema Respiratório/enzimologia , Transdução de Sinais , Adenoviridae/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon-alfa/farmacologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
J Appl Physiol (1985) ; 103(3): 843-51, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17556495

RESUMO

We sought to examine flow-mediated vasodilation (FMD) in both the arm [brachial artery (BA)] and lower leg [popliteal artery (PA)] of 12 young, healthy subjects. Vessel diameter, blood velocity, and calculated shear rate were determined with ultrasound Doppler following a suprasystolic cuff occlusion (5 min) in both the BA and PA and an additional reduced occlusion period (30-120 s) in the BA to more closely equate the shear stimulus observed in the PA. The BA revealed a smaller diameter and larger postischemic cumulative blood velocity [area under curve (AUC)] than the PA, a combination that resulted in an elevated postcuff cumulative shear rate (AUC) in the BA (BA: 25,419 +/- 2,896 s(-1).s, PA 8,089 +/- 1,048 s(-1).s; P < 0.05). Thus, when expressed in traditional terms, there was a tendency for the BA to have a greater FMD than the PA (6.5 +/- 1.0 and 4.5 +/- 0.8%, respectively; P = 0.1). However, when shear rate was experimentally matched (PA: 4.5 +/- 0.8%; BA: -0.4 +/- 0.4%) or mathematically normalized (PA: 6.8 x 10(-4) +/- 1.6 x 10(-4)%Delta/s(-1).s; BA: 2.5 x 10(-4) +/- 0.4 x 10(-4)%Delta/s(-1).s), the PA revealed a greater FMD per unit of shear rate than the BA (P < 0.05). These data highlight the importance of assessing the shear stimulus to which each vessel is exposed and reveal limb-specific differences in flow-mediated dilation.


Assuntos
Artéria Braquial/fisiologia , Endotélio Vascular/fisiologia , Artéria Poplítea/fisiologia , Vasodilatação/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Humanos , Masculino , Fluxo Sanguíneo Regional/fisiologia , Resistência ao Cisalhamento
10.
J Virol ; 81(4): 1786-95, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17151097

RESUMO

The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.


Assuntos
Apoptose , Interferons/fisiologia , NF-kappa B/fisiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Regulação para Baixo , Receptores ErbB/fisiologia , Humanos , Complexo de Endopeptidases do Proteassoma , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Vírus Sinciciais Respiratórios/fisiologia , Células Vero , Replicação Viral
11.
Virology ; 344(2): 328-39, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16216295

RESUMO

Human respiratory syncytial virus (RSV) inhibits type I interferon-induced gene expression by decreasing expression of signal transducer and activator of transcription (Stat)2. To identify the RSV protein that mediates effects on Stat2, airway epithelial cells were infected with vaccinia virus vectors that express single RSV proteins. Expression of RSV nonstructural (NS)2 protein alone was sufficient to decrease Stat2 levels. Furthermore, decreasing RSV NS2 levels using RNA interference in respiratory epithelial cells inhibited the RSV-mediated decrease in Stat2 expression. Airway epithelial cells were also infected with equivalent inoculums of RSV without or with single gene deletions of NS1 or NS2. RSV infection without NS2 expression did not result in decreased Stat2 levels or loss of type I interferon-dependent signaling, indicating that NS2 expression is necessary for RSV effects on Stat2. Taken together, our results indicate that NS2 regulates Stat2 levels during RSV infection, thereby modulating viral effects on interferon-dependent gene expression.


Assuntos
Interferon Tipo I/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Interferência de RNA , Mucosa Respiratória/citologia , Vírus Sinciciais Respiratórios/genética , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Proteínas não Estruturais Virais/genética
12.
Am J Respir Cell Mol Biol ; 30(6): 893-900, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14722224

RESUMO

Respiratory viruses often express mechanisms to resist host antiviral systems, but the biochemical basis for evasion of interferon effects by respiratory syncytial virus (RSV) is poorly defined. In this study, we identified RSV effects on interferon (IFN)-dependent signal transduction and gene expression in human airway epithelial cells. Initial experiments demonstrated inhibition of antiviral gene expression induced by IFN-alpha and IFN-beta, but not IFN-gamma, in epithelial cells infected with RSV. Selective viral effects on type I IFN-dependent signaling were confirmed when we observed impaired type I, but not type II, IFN-induced activation of the transcription factor Stat1 in RSV-infected cells. RSV infection of airway epithelial cells resulted in decreased Stat2 expression and function with preservation of upstream signaling events, providing a molecular mechanism for viral inhibition of the type I IFN JAK-STAT pathway. Furthermore, nonspecific pharmacologic inhibition of proteasome function in RSV-infected cells restored Stat2 levels and IFN-dependent activation of Stat1. The results indicate that RSV acts on epithelial cells in the airway to directly modulate the type I IFN JAK-STAT pathway, and this effect is likely mediated though proteasome-dependent degradation of Stat2. Decreased antiviral gene expression in RSV-infected airway epithelial cells may allow RSV replication and establishment of a productive viral infection through subversion of IFN-dependent immunity.


Assuntos
Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Mucosa Respiratória/citologia , Vírus Sinciciais Respiratórios/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/imunologia , Humanos , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...