Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37571793

RESUMO

Artificial intelligence (AI) systems are increasingly used in corporate security measures to predict the status of assets and suggest appropriate procedures. These programs are also designed to reduce repair time. One way to create an efficient system is to integrate physical repair agents with a computerized management system to develop an intelligent system. To address this, there is a need for a new technique to assist operators in interacting with a predictive system using natural language. The system also uses double neural network convolutional models to analyze device data. For fault prioritization, a technique utilizing fuzzy logic is presented. This strategy ranks the flaws based on the harm or expense they produce. However, the method's success relies on ongoing improvement in spoken language comprehension through language modification and query processing. To carry out this technique, a conversation-driven design is necessary. This type of learning relies on actual experiences with the assistants to provide efficient learning data for language and interaction models. These models can be trained to have more natural conversations. To improve accuracy, academics should construct and maintain publicly usable training sets to update word vectors. We proposed the model dataset (DS) with the Adam (AD) optimizer, Ridge Regression (RR) and Feature Mapping (FP). Our proposed algorithm has been coined with an appropriate acronym DSADRRFP. The same proposed approach aims to leverage each component's benefits to enhance the predictive model's overall performance and precision. This ensures the model is up-to-date and accurate. In conclusion, an AI system integrated with physical repair agents is a useful tool in corporate security measures. However, it needs to be refined to extract data from the operating system and to interact with users in a natural language. The system also needs to be constantly updated to improve accuracy.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508907

RESUMO

This study aims to develop a predictive model for SARS-CoV-2 using machine-learning techniques and to explore various feature selection methods to enhance the accuracy of predictions. A precise forecast of the SARS-CoV-2 respiratory infections spread can help with efficient planning and resource allocation. The proposed model utilizes stochastic regression to capture the virus transmission's stochastic nature, considering data uncertainties. Feature selection techniques are employed to identify the most relevant and informative features contributing to prediction accuracy. Furthermore, the study explores the use of neighbor embedding and Sammon mapping algorithms to visualize high-dimensional SARS-CoV-2 respiratory infection data in a lower-dimensional space, enabling better interpretation and understanding of the underlying patterns. The application of machine-learning techniques for predicting SARS-CoV-2 respiratory infections, the use of statistical measures in healthcare, including confirmed cases, deaths, and recoveries, and an analysis of country-wise dynamics of the pandemic using machine-learning models are used. Our analysis involves the performance of various algorithms, including neural networks (NN), decision trees (DT), random forests (RF), the Adam optimizer (AD), hyperparameters (HP), stochastic regression (SR), neighbor embedding (NE), and Sammon mapping (SM). A pre-processed and feature-extracted SARS-CoV-2 respiratory infection dataset is combined with ADHPSRNESM to form a new orchestration in the proposed model for a perfect prediction to increase the precision of accuracy. The findings of this research can contribute to public health efforts by enabling policymakers and healthcare professionals to make informed decisions based on accurate predictions, ultimately aiding in managing and controlling the SARS-CoV-2 pandemic.

3.
Diagnostics (Basel) ; 13(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900145

RESUMO

Diabetic retinopathy (DR) and diabetic macular edema (DME) are forms of eye illness caused by diabetes that affects the blood vessels in the eyes, with the ground occupied by lesions of varied extent determining the disease burden. This is among the most common cause of visual impairment in the working population. Various factors have been discovered to play an important role in a person's growth of this condition. Among the essential elements at the top of the list are anxiety and long-term diabetes. If not detected early, this illness might result in permanent eyesight loss. The damage can be reduced or avoided if it is recognized ahead of time. Unfortunately, due to the time and arduous nature of the diagnosing process, it is harder to identify the prevalence of this condition. Skilled doctors manually review digital color images to look for damage produced by vascular anomalies, the most common complication of diabetic retinopathy. Even though this procedure is reasonably accurate, it is quite pricey. The delays highlight the necessity for diagnosis to be automated, which will have a considerable positive significant impact on the health sector. The use of AI in diagnosing the disease has yielded promising and dependable findings in recent years, which is the impetus for this publication. This article used ensemble convolutional neural network (ECNN) to diagnose DR and DME automatically, with accurate results of 99 percent. This result was achieved using preprocessing, blood vessel segmentation, feature extraction, and classification. For contrast enhancement, the Harris hawks optimization (HHO) technique is presented. Finally, the experiments were conducted for two kinds of datasets: IDRiR and Messidor for accuracy, precision, recall, F-score, computational time, and error rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...