Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Handb Exp Pharmacol ; 284: 133-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37059910

RESUMO

Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tecnologia , Tamanho da Partícula , Preparações de Ação Retardada
2.
Drug Discov Today ; 28(2): 103463, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481584

RESUMO

Long-acting injectable (LAI) delivery technologies have enabled the development of several pharmaceutical products that improve patient health by delivering therapeutics from weeks to months. Over the last decade, due to its good biocompatibility, formulation tunability, wide range of degradation rates, and extensive clinical studies, polyester-based LAI technologies including poly(lactic-co-glycolic acid) (PLGA) have made substantial progress. Herein, we discuss PLGA properties with seminal approaches in the development of LAIs, the role of molecular dynamic simulations of polymer-drug interactions, and their effects on quality attributes. We also outline the landscape of various advanced PLGA-based and a few non-PLGA LAI technologies; their design, delivery, and challenges from laboratory scale to preclinical and clinical use; and commercial products incorporating the importance of end-user preferences.


Assuntos
Simulação de Dinâmica Molecular , Poliésteres , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Preparações Farmacêuticas
3.
Adv Healthc Mater ; 12(3): e2201000, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285360

RESUMO

Hydrogel-based drug delivery systems typically aim to release drugs locally to tissue in an extended manner. Tissue adhesive alginate-polyacrylamide tough hydrogels are recently demonstrated to serve as an extended-release system for the corticosteroid triamcinolone acetonide. Here, the stimuli-responsive controlled release of triamcinolone acetonide from the alginate-polyacrylamide tough hydrogel drug delivery systems (TADDS) and evolving new approaches to combine alginate-polyacrylamide tough hydrogel with drug-loaded nano and microparticles, generating composite TADDS is described. Stimulation with ultrasound pulses or temperature changes is demonstrated to control the release of triamcinolone acetonide from the TADDS. The incorporation of laponite nanoparticles or PLGA microparticles into the tough hydrogel is shown to further enhance the versatility to control and modulate the release of triamcinolone acetonide. A first technical exploration of a TADDS shelf-life concept is performed using lyophilization, where lyophilized TADDS are physically stable and the bioactive integrity of released triamcinolone acetonide is demonstrated. Given the tunability of properties, the TADDS are a suggested technology platform for controlled drug delivery.


Assuntos
Adesivos , Triancinolona Acetonida , Corticosteroides , Hidrogéis , Alginatos
4.
Expert Opin Drug Deliv ; 19(10): 1265-1283, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35877189

RESUMO

INTRODUCTION: We see a development in the field of long-acting products to serve patients with chronic diseases by providing benefits in adherence, efficacy, and safety of the treatment. This review investigates features of long-acting products on the market/pipeline to understand which drug substance (DS) and drug product (DP) characteristics likely enable a successful patient-centric, low-dosing frequency product. AREAS COVERED: This review evaluates marketed/pipeline long-acting products with greater than 1 week release of small molecules and peptides by oral and injectable route of administration (RoA), with particular focus on patient centricity, adherence impact, health outcomes, market trends, and the match of DS/DP technologies which lead to market success. EXPERT OPINION: Emerging trends are expected to change the field of long-acting products in the upcoming years by increasing capability in engineered molecules (low solubility, long half-life, high potency, etc.), directly developing DP as long-acting oral/injectable, increasing the proportion of products for local drug delivery, and a direction toward more subcutaneous, self-administered products. Among long-acting injectable products, nanosuspensions show a superiority in dose per administration and dosing interval, overwhelming the field of infectious diseases with the recently marketed products.


Assuntos
Sistemas de Liberação de Medicamentos , Assistência Centrada no Paciente , Humanos , Injeções , Solubilidade , Preparações de Ação Retardada
5.
Nat Biomed Eng ; 6(10): 1167-1179, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34980903

RESUMO

Hydrogels that provide mechanical support and sustainably release therapeutics have been used to treat tendon injuries. However, most hydrogels are insufficiently tough, release drugs in bursts, and require cell infiltration or suturing to integrate with surrounding tissue. Here we report that a hydrogel serving as a high-capacity drug depot and combining a dissipative tough matrix on one side and a chitosan adhesive surface on the other side supports tendon gliding and strong adhesion (larger than 1,000 J m-2) to tendon on opposite surfaces of the hydrogel, as we show with porcine and human tendon preparations during cyclic-friction loadings. The hydrogel is biocompatible, strongly adheres to patellar, supraspinatus and Achilles tendons of live rats, boosted healing and reduced scar formation in a rat model of Achilles-tendon rupture, and sustainably released the corticosteroid triamcinolone acetonide in a rat model of patellar tendon injury, reducing inflammation, modulating chemokine secretion, recruiting tendon stem and progenitor cells, and promoting macrophage polarization to the M2 phenotype. Hydrogels with 'Janus' surfaces and sustained-drug-release functionality could be designed for a range of biomedical applications.


Assuntos
Tendão do Calcâneo , Quitosana , Traumatismos dos Tendões , Ratos , Humanos , Suínos , Animais , Hidrogéis , Quitosana/metabolismo , Adesivos/metabolismo , Triancinolona Acetonida/metabolismo , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/metabolismo , Tendão do Calcâneo/metabolismo , Quimiocinas/metabolismo
6.
Adv Drug Deliv Rev ; 167: 19-46, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33202261

RESUMO

Long acting injectable formulations have been developed to sustain the action of drugs in the body over desired periods of time. These delivery platforms have been utilized for both systemic and local drug delivery applications. This review gives an overview of long acting injectable systems that are currently in clinical use. These products are categorized in three different groups: biodegradable polymeric systems, including microparticles and implants; micro and nanocrystal suspensions and oil-based formulations. Furthermore, the applications of these drug delivery platforms for the management of various chronic diseases are summarized. Finally, this review addresses industrial challenges regarding the development of long acting injectable formulations.


Assuntos
Implantes Absorvíveis , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Implantes de Medicamento/química , Química Farmacêutica , Liberação Controlada de Fármacos , Emulsões/química , Humanos , Microesferas , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Suspensões/química
7.
Drug Discov Today ; 21(4): 640-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26969576

RESUMO

Locoregional delivery of anticancer drugs is an attractive approach to minimize adverse effects associated with intravenous chemotherapy. Polymer-based drug depots injected or implanted intratumorally or adjacent to the tumor can provide long-term local drug exposure. This review highlights studies in which drug-eluting depots have been applied locally in the treatment of cancer. In many cases such drug depots are used for prevention of tumor recurrence after surgery to eradicate remaining tumor cells. Clinical success has been reported for the treatment of brain cancer and liver cancer, and preclinical studies showed proof-of-concept for inhaled drug depots in lung cancer and intraperitoneally injected depots for the treatment of abdominal cancer.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Vias de Administração de Medicamentos , Embolização Terapêutica , Humanos , Neoplasias/terapia , Polímeros/administração & dosagem , Polímeros/química
8.
Int J Pharm ; 499(1-2): 358-367, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26795193

RESUMO

Poly(lactide-co-glycolide) (PLGA) microspheres are efficient delivery systems for controlled release of low molecular weight drugs as well as therapeutic macromolecules. The most common microencapsulation methods are based on emulsification procedures, in which emulsified droplets of polymer and drug solidify into microspheres when the solvent is extracted from the polymeric phase. Although high encapsulation efficiencies have been reported for hydrophobic small molecules, encapsulation of hydrophilic and/or amphiphilic small molecules is challenging due to the partitioning of drug from the polymeric phase into the external phase before solidification of the particles. This review addresses formulation-related aspects for efficient encapsulation of small hydrophilic/amphiphilic molecules into PLGA microspheres using conventional emulsification methods (e.g., oil/water, water/oil/water, solid/oil/water, water/oil/oil) and highlights novel emulsification technologies such as microfluidics, membrane emulsification and other techniques including spray drying and inkjet printing. Collectively, these novel microencapsulation technologies afford production of this type of drug loaded microspheres in a robust and well controlled manner.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Ácido Poliglicólico/química , Química Farmacêutica/métodos , Preparações de Ação Retardada , Composição de Medicamentos/métodos , Emulsões , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microesferas , Peso Molecular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solventes/química
9.
Biomaterials ; 42: 151-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542803

RESUMO

Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres.


Assuntos
Microesferas , Sirolimo/efeitos adversos , Sirolimo/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cápsulas , Feminino , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Microscopia Eletrônica de Varredura , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Ratos Endogâmicos F344 , Sirolimo/uso terapêutico , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/patologia
10.
Curr Cancer Drug Targets ; 13(4): 362-78, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23517593

RESUMO

As of 21st century, cancer is arguably the most complex and challenging disease known to mankind and an inevitable public health concern of this millennium. Nanotechnology, suitably amalgamated with cancer research, has ushered an era of highly personalized and safer medicines which can improve cancer diagnosis and therapy. A wide variety of nanomedicines are currently under investigation, including polymeric/non-polymeric nanoparticles, dendrimers, quantum dots, carbon nanotubes, lipid- and micelle-based nanoparticles. The bases of these nanomedicines in reducing toxicity associated with cancer therapy are their ability to carry a large payload and multivalent-ligand targeting. This imparts specificity for targeting the tissues as well as bypass resistance mechanisms. The major hurdles on these future medicines are potential toxicity of nanoparticles, which imposes the need of extensive regulatory evaluation before nanomedicines could be utilized as cancer therapeutics. This review highlights nanopharmaceuticals that have been investigated in oncology for various applications (diagnosis, therapeutic delivery and theranostics). It also discusses the effects of nano-sized materials on tissues/organ functions, the possibility of overcoming multi-drug resistance by using nanomedicines and their current clinical status.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...