Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(1): 78-87, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33393308

RESUMO

Chitooligosaccharides (COS) generated from either chitin (chitin oligosaccharides) or chitosan (chitosan oligosaccharides) have a wide range of applications in agriculture, medicine, and other fields. Here, we report the characterization of a chitosanase from Bacillus amyloliquefaciens (BamCsn) and the importance of a tryptophan (Trp), W204, for BamCsn activity. BamCsn hydrolyzed the chitosan polymer by an endo mode. It also hydrolyzed chitin oligosaccharides and interestingly exhibited transglycosylation activity on chitotetraose and chitopentaose. Mutation of W204, a nonconserved amino acid in chitosanases, to W204A abolished the hydrolytic activity of BamCsn, with a change in the structure that resulted in a decreased affinity for the substrate and impaired the catalytic ability. Phylogenetic analysis revealed that BamCsn could belong to a new class of chitosanases that showed unique properties like transglycosylation, cleavage of chitin oligosaccharides, and the presence of W204 residues, which is important for activity. Chitosanases belonging to the BamCsn class showed a high potential to generate COS from chitinous substrates.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/biossíntese , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Quitina/metabolismo , Quitosana/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Hidrólise , Especificidade por Substrato
2.
Bioresour Technol ; 220: 200-207, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27567481

RESUMO

The current study describes heterologous expression and biochemical characterization of single-modular chitinase-D from Serratia marcescens (SmChiD) with unprecedented catalytic properties which include chitobiase and transglycosylation (TG) activities besides hydrolytic activity. Without accessory domains, SmChiD, hydrolyzed insoluble polymeric chitin substrates like colloidal, α- and ß-chitin. Activity studies on CHOS with degree of polymerization (DP) 2-6 as substrate revealed that SmChiD hydrolyzed DP2 with a chitobiase activity and showed TG activity on CHOS with DP3-6, producing longer chain CHOS. But, the TG products were further hydrolyzed to shorter chain CHOS with DP1-2 products. SmChiD with its unique catalytic properties, could be a potential enzyme for the production of long chain CHOS and also for the preparation of efficient enzyme cocktails for chitin degradation.


Assuntos
Quitinases/química , Serratia marcescens/química , Proteínas de Bactérias/metabolismo , Quitina , Hidrólise
3.
Crit Rev Biotechnol ; 35(1): 29-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24020506

RESUMO

Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.


Assuntos
Quitina/análogos & derivados , Plantas/imunologia , Biotecnologia/métodos , Parede Celular/metabolismo , Quitina/metabolismo , Quitosana , Fungos/metabolismo , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Oligossacarídeos , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...