Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 148(1): 4, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995454

RESUMO

Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCIs) containing α-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP), posing challenges in early diagnosis. Numerous studies have reported alterations in DNA methylation in neurodegenerative diseases, with candidate loci being identified in various parkinsonian disorders including MSA, PD, and PSP. Although MSA and PSP present with substantial white matter pathology, alterations in white matter have also been reported in PD. However, studies comparing the DNA methylation architectures of white matter in these diseases are lacking. We therefore aimed to investigate genome-wide DNA methylation patterns in the frontal lobe white matter of individuals with MSA (n = 17), PD (n = 17), and PSP (n = 16) along with controls (n = 15) using the Illumina EPIC array, to identify shared and disease-specific DNA methylation alterations. Genome-wide DNA methylation profiling of frontal lobe white matter in the three parkinsonian disorders revealed substantial commonalities in DNA methylation alterations in MSA, PD, and PSP. We further used weighted gene correlation network analysis to identify disease-associated co-methylation signatures and identified dysregulation in processes relating to Wnt signaling, signal transduction, endoplasmic reticulum stress, mitochondrial processes, RNA interference, and endosomal transport to be shared between these parkinsonian disorders. Our overall analysis points toward more similarities in DNA methylation patterns between MSA and PD, both synucleinopathies, compared to that between MSA and PD with PSP, which is a tauopathy. Our results also highlight several shared DNA methylation changes and pathways indicative of converging molecular mechanisms in the white matter contributing toward neurodegeneration in all three parkinsonian disorders.


Assuntos
Metilação de DNA , Lobo Frontal , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Paralisia Supranuclear Progressiva , Substância Branca , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Metilação de DNA/genética , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Substância Branca/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Idoso , Feminino , Masculino , Lobo Frontal/patologia , Lobo Frontal/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834366

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, which disproportionately affects women. AD symptoms include progressive memory loss associated with amyloid-ß (Aß) plaques and dismantled synaptic mechanisms. Perineuronal nets (PNNs) are important components of the extracellular matrix with a critical role in synaptic stabilisation and have been shown to be influenced by microglia, which enter an activated state during AD. This study aimed to investigate whether sex differences affected the density of PNNs alongside the labelling of microglia and Aß plaques density.We performed neurochemistry experiments using acute brain slices from both sexes of the APPNL-F/NL-F mouse model of AD, aged-matched (2-5 and 12-16 months) to wild-type mice, combined with a weighted gene co-expression network analysis (WGCNA). The lateral entorhinal cortex (LEC) and hippocampal CA1, which are vulnerable during early AD pathology, were investigated and compared to the presubiculum (PRS), a region unscathed by AD pathology. The highest density of PNNs was found in the LEC and PRS regions of aged APPNL-F/NL-F mice with a region-specific sex differences. Analysis of the CA1 region using multiplex-fluorescent images from aged APPNL-F/NL-F mice showed regions of dense Aß plaques near clusters of CD68, indicative of activated microglia and PNNs. This was consistent with the results of WGCNA performed on normalised data on microglial cells isolated from age-matched, late-stage male and female wild-type and APP knock-in mice, which revealed one microglial module that showed differential expression associated with tissue, age, genotype, and sex, which showed enrichment for fc-receptor-mediated phagocytosis. Our data are consistent with the hypothesis that sex-related differences contribute to a disrupted interaction between PNNs and microglia in specific brain regions associated with AD pathogenesis.


Assuntos
Doença de Alzheimer , Feminino , Masculino , Camundongos , Humanos , Animais , Idoso , Doença de Alzheimer/metabolismo , Caracteres Sexuais , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
3.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425748

RESUMO

Mutations in ITM2B cause familial British, Danish, Chinese and Korean dementias. In familial British dementia (FBD) a mutation in the stop codon of the ITM2B gene (also known as BRI2 ) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons, and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. Consequently, the ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. Pathological examination of post-mortem tissue support ABri expression in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are the major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. This has implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...