Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2760: 169-198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468089

RESUMO

Class II Type V endonucleases have increasingly been adapted to develop sophisticated and easily accessible synthetic biology tools for genome editing, transcriptional regulation, and functional genomic screening in a wide range of organisms. One such endonuclease, Cas12a, presents itself as an attractive alternative to Cas9-based systems. The ability to mature its own guide RNAs (gRNAs) from a single transcript has been leveraged for easy multiplexing, and its lack of requirement of a tracrRNA element, also allows for short gRNA expression cassettes. To extend these functionalities into the industrially relevant oleaginous yeast Yarrowia lipolytica, we developed a set of CRISPR-Cas12a vectors for easy multiplexed gene knockout, repression, and activation. We further extended the utility of this CRISPR-Cas12a system to functional genomic screening by constructing a genome-wide guide library targeting every gene with an eightfold coverage. Pooled CRISPR screens conducted with this library were used to profile Cas12a guide activities and develop a machine learning algorithm that could accurately predict highly efficient Cas12a gRNA. In this protocols chapter, we first present a method by which protein coding genes may be functionally disrupted via indel formation with CRISPR-Cas12a systems. Further, we describe how Cas12a fused to a transcriptional regulator can be used in conjunction with shortened gRNA to achieve transcriptional repression or activation. Finally, we describe the design, cloning, and validation of a genome-wide library as well as a protocol for the execution of a pooled CRISPR screen, to determine guide activity profiles in a genome-wide context in Y. lipolytica. The tools and strategies discussed here expand the list of available synthetic biology tools for facile genome engineering in this industrially important host.


Assuntos
Edição de Genes , Yarrowia , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Yarrowia/genética , Yarrowia/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Endonucleases/genética , Testes Genéticos
2.
Commun Biol ; 6(1): 617, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291233

RESUMO

High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of engineered and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes via calculation of an optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeast Yarrowia lipolytica and acCRISPR was used to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying relative cellular fitness under high salt conditions to identify genes that were related to salt tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest.


Assuntos
Sistemas CRISPR-Cas , Yarrowia , Biblioteca Gênica , Genômica , Genes Essenciais , Yarrowia/genética
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36928506

RESUMO

The multifaceted nature of CRISPR screens has propelled advancements in the field of functional genomics. Pooled CRISPR screens involve creating programmed genetic perturbations across multiple genomic sites in a pool of host cells subjected to a challenge, empowering researchers to identify genetic causes of desirable phenotypes. These genome-wide screens have been widely used in mammalian cells to discover biological mechanisms of diseases and drive the development of targeted drugs and therapeutics. Their use in non-model organisms, especially in microbes to improve bioprocessing-relevant phenotypes, has been limited. Further compounding this issue is the lack of bioinformatic algorithms for analyzing microbial screening data with high accuracy. Here, we describe the general approach and underlying principles for conducting pooled CRISPR knockout screens in non-conventional yeasts and performing downstream analysis of the screening data, while also reviewing state-of-the-art algorithms for identification of CRISPR screening outcomes. Application of pooled CRISPR screens to non-model yeasts holds considerable potential to uncover novel metabolic engineering targets and improve industrial bioproduction. ONE-SENTENCE SUMMARY: This mini-review describes experimental and computational approaches for functional genomic screening using CRISPR technologies in non-conventional microbes.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genômica , Genoma , Biologia Computacional , Mamíferos/genética
4.
Biotechnol Bioeng ; 119(12): 3623-3631, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36042688

RESUMO

Yarrowia lipolytica is a metabolic engineering host of growing industrial interest due to its ability to metabolize hydrocarbons, fatty acids, glycerol, and other renewable carbon sources. This dimorphic yeast undergoes a stress-induced transition to a multicellular hyphal state, which can negatively impact biosynthetic activity, reduce oxygen and nutrient mass transfer in cell cultures, and increase culture viscosity. Identifying mutations that prevent the formation of hyphae would help alleviate the bioprocess challenges that they create. To this end, we conducted a genome-wide CRISPR screen to identify genetic knockouts that prevent the transition to hyphal morphology. The screen identified five mutants with a null-hyphal phenotype-ΔRAS2, ΔRHO5, ΔSFL1, ΔSNF2, and ΔPAXIP1. Of these hits, only ΔRAS2 suppressed hyphal formation in an engineered lycopene production strain over a multiday culture. The RAS2 knockout was also the only genetic disruption characterized that did not affect lycopene production, producing more than 5 mg L-1 OD-1 from a heterologous pathway with enhanced carbon flux through the mevalonate pathway. These data suggest that a ΔRAS2 mutant of Y. lipolytica could prove useful in engineering a metabolic engineering host of the production of carotenoids and other biochemicals.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Hifas , Licopeno/metabolismo , Sistemas CRISPR-Cas , Engenharia Metabólica , Carotenoides/metabolismo , Fenótipo
5.
Nat Commun ; 13(1): 922, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177617

RESUMO

Genome-wide functional genetic screens have been successful in discovering genotype-phenotype relationships and in engineering new phenotypes. While broadly applied in mammalian cell lines and in E. coli, use in non-conventional microorganisms has been limited, in part, due to the inability to accurately design high activity CRISPR guides in such species. Here, we develop an experimental-computational approach to sgRNA design that is specific to an organism of choice, in this case the oleaginous yeast Yarrowia lipolytica. A negative selection screen in the absence of non-homologous end-joining, the dominant DNA repair mechanism, was used to generate single guide RNA (sgRNA) activity profiles for both SpCas9 and LbCas12a. This genome-wide data served as input to a deep learning algorithm, DeepGuide, that is able to accurately predict guide activity. DeepGuide uses unsupervised learning to obtain a compressed representation of the genome, followed by supervised learning to map sgRNA sequence, genomic context, and epigenetic features with guide activity. Experimental validation, both genome-wide and with a subset of selected genes, confirms DeepGuide's ability to accurately predict high activity sgRNAs. DeepGuide provides an organism specific predictor of CRISPR guide activity that with retraining could be applied to other fungal species, prokaryotes, and other non-conventional organisms.


Assuntos
Edição de Genes/métodos , Modelos Genéticos , RNA Guia de Cinetoplastídeos/metabolismo , Yarrowia/genética , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Aprendizado Profundo , Endodesoxirribonucleases/genética , Genoma Fúngico , RNA Guia de Cinetoplastídeos/genética
6.
Methods Mol Biol ; 2307: 123-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847986

RESUMO

Genome-wide functional genomic screens are essential to determining the genetic underpinning of a biological process. Novel and powerful tools for perturbing gene function, with the help of genetic and epigenetic information, have made it possible to systematically investigate the contribution of every gene to evolved and engineered phenotypes. Functional genomics and screening for enhanced phenotypes become ever more important when dealing with nonconventional hosts. Non-model organisms are valuable to metabolic engineering as they present a range of desirable phenotypes and can help in avoiding complex and intensive engineering of less suitable hosts that do not possess the desired phenotype(s). Domestication of such hosts however requires a suite of synthetic biology tools that allow for targeted genome engineering, regulation of gene expression, and genome-wide mutational screens. The widespread adoption of CRISPR-Cas9 and CRISPR-Cpf1 based systems has allowed for such screens in many organisms. Key considerations in any genome-wide CRISPR screen are the design of a set of unique guide RNAs targeting the required set of genes in the genome and the design of nontargeting guide RNAs that function as appropriate negative controls for the experiment. In this methods chapter, we present protocols for the design of guides for a CRISPR screen, targeting every gene in the genome of the industrially relevant oleaginous yeast Yarrowia lipolytica. The first set of protocols describes the algorithm for the design of genome targeting and nontargeting guides for a genome-wide CRISPR-Cpf1 screen. The second set of protocols describes modifications to the first for the design of guides for a CRISPR-Cas9 screen. The strategies described here should serve as an efficient guide to design a library of gRNAs for most genome-wide CRISPR screens.


Assuntos
Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Yarrowia/genética , Sistemas CRISPR-Cas , Biblioteca Gênica , Genoma Fúngico , Engenharia Metabólica , Biologia Sintética
7.
Methods Mol Biol ; 2307: 233-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847994

RESUMO

With the discovery of Western blotting as first described by Towbin et al. in 1979, the transfer and visualization of electrophoretically separated proteins on membranes has become the de facto method for the qualitative and quantitative detection of proteins of interest. In this method, proteins are resolved by electrophoresis on a polyacrylamide gel, followed by a transfer of the separated proteins onto a nitrocellulose or polyvinyl difluoride (PVDF) membrane. Once immobilized on these membranes, the protein of interest can be detected and visualized by exploiting antigen-antibody interactions. However, not all proteins are amenable to easy detection by Western blotting. Integral membrane proteins are a class of proteins that are attached to a biological membrane through a series of transmembrane segments that span the width of the membrane. Due to the inherent hydrophobicity of these proteins and their tendency to aggregate, the characterization and detection of these proteins can be challenging. In this methods chapter, we present a protocol for the easy detection and quantification of these proteins in the industrially important oleaginous yeast Yarrowia lipolytica. The first protocol describes a Western blotting procedure to quantify soluble cytosolic proteins of interest in Yarrowia lipolytica from its total cell lysate. The second protocol describes modifications to the first that are done to enhance detection and quantification of membrane-bound proteins in Yarrowia lipolytica from its total cell lysate, without the need for isolating the membrane-bound proteins, for use in Western blotting. The immunoblotting strategies described here should serve as an efficient and simple guide to quantify both cytosolic and the intractable membrane-bound proteins in Yarrowia lipolytica.


Assuntos
Proteínas de Membrana/metabolismo , Yarrowia/metabolismo , Western Blotting , Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Engenharia Metabólica
8.
ACS Synth Biol ; 9(4): 967-971, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32208677

RESUMO

Yarrowia lipolytica has fast become a biotechnologically significant yeast for its ability to accumulate lipids to high levels. While there exists a suite of synthetic biology tools for genetic engineering in this yeast, there is a need for multipurposed tools for rapid strain generation. Here, we describe a dual purpose CRISPR-Cpf1 system that is capable of simultaneous gene disruption and gene regulation. Truncating guide RNA spacer length to 16 nt inhibited nuclease activity but not binding to the target loci, enabling gene activation and repression with Cpf1-fused transcriptional regulators. Gene repression was demonstrated using a Cpf1-Mxi1 fusion achieving a 7-fold reduction in mRNA, while CRISPR-activation with Cpf1-VPR increased hrGFP expression by 10-fold. High efficiency disruptions were achieved with gRNAs 23-25 bp in length, and efficiency and repression levels were maintained with multiplexed expression of truncated and full-length gRNAs. The developed CRISPR-Cpf1 system should prove useful in metabolic engineering, genome wide screening, and functional genomics studies.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Regulação Fúngica da Expressão Gênica/genética , RNA Guia de Cinetoplastídeos/genética , Yarrowia/genética , Proteínas de Bactérias/genética , Endonucleases/genética , Genoma Fúngico/genética
9.
Biotechnol Bioeng ; 114(12): 2896-2906, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28832943

RESUMO

In many organisms of biotechnological importance precise genome editing is limited by inherently low homologous recombination (HR) efficiencies. A number of strategies exist to increase the effectiveness of this native DNA repair pathway; however, most strategies rely on permanently disabling competing repair pathways, thus reducing an organism's capacity to repair naturally occurring double strand breaks. Here, we describe a CRISPR interference (CRISPRi) system for gene repression in the oleochemical-producing yeast Yarrowia lipolytica. By using a multiplexed sgRNA targeting strategy, we demonstrate efficient repression of eight out of nine targeted genes to enhance HR. Strains with nonhomologous end-joining repressed were shown to have increased rates of HR when transformed with a linear DNA fragment with homology to a genomic locus. With multiplexed targeting of KU70 and KU80, and enhanced repression with Mxi1 fused to deactivated Cas9 (dCas9), rates of HR as high as 90% were achieved. The developed CRISPRi system enables enhanced HR in Y. lipolytica without permanent genetic knockouts and promises to be a potent tool for other metabolic engineering, synthetic biology, and functional genomics studies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reparo do DNA por Junção de Extremidades/genética , Edição de Genes/métodos , Melhoramento Genético/métodos , Genoma Fúngico/genética , Proteínas Recombinantes/biossíntese , Yarrowia/genética , Regulação Fúngica da Expressão Gênica/genética , Recombinação Homóloga/genética , Proteínas Recombinantes/genética , Proteínas Repressoras/genética
10.
Water Sci Technol ; 75(1-2): 182-188, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28067658

RESUMO

A single step process is proposed for ammonium removal from nitrogenous industrial effluents, with a concomitant generation of algal biomass. A microalgal strain found in the effluent treatment plant of a fertilizer industry in Mumbai, India was systematically adapted to remove up to 700 ppm of ammoniacal nitrogen from industrial wastewater, which is nearly four times higher than the ammonium tolerance reported in the literature as well as other algal strains tested in our laboratory. 18S rRNA sequencing revealed the strain to be Chlorella pyrenoidosa. Effects of process parameters such as pH, temperature and light intensity on cell growth and ammonium removal by the adapted cells were studied. Optimal conditions were found to be pH of 9, temperature of 30 °C and a light intensity of 3,500 Lux for the adapted cells.


Assuntos
Aclimatação , Compostos de Amônio/metabolismo , Chlorella/fisiologia , Águas Residuárias/química , Compostos de Amônio/química , Biomassa , Reatores Biológicos , Índia , Luz , Microalgas/crescimento & desenvolvimento , Nitrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...