Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38726825

RESUMO

Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm-1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.


Assuntos
Antibacterianos , Magnetossomos , Nanopartículas , Providencia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Ferro/química , Ferro/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetossomos/metabolismo , Testes de Sensibilidade Microbiana , Nanopartículas/química , Tamanho da Partícula , Providencia/química , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus/efeitos dos fármacos
2.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299706

RESUMO

Nanomaterials are currently used for different applications in several fields. Bringing the measurements of a material down to nanoscale size makes vital contributions to the improvement of the characteristics of materials. The polymer composites acquire various properties when added to nanoparticles, increasing characteristics such as bonding strength, physical property, fire retardance, energy storage capacity, etc. The objective of this review was to validate the major functionality of the carbon and cellulose-based nanoparticle-filled polymer nanocomposites (PNC), which include fabricating procedures, fundamental structural properties, characterization, morphological properties, and their applications. Subsequently, this review includes arrangement of nanoparticles, their influence, and the factors necessary to attain the required size, shape, and properties of the PNCs.

3.
Appl Biochem Biotechnol ; 194(11): 5132-5150, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35695951

RESUMO

Endophytic fungi were isolated from forty plant leaf samples from Gudiyam forest. The potent antibacterial strain Aspergillus niger E12 isolated from the plant Dodonaea viscosa showed maximal antibacterial activity against all the test organisms, viz., Staphylococcus aureus, Bacillus coagulans, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The production of the antibacterial compound was optimized using the yeast extract sucrose medium (2% YES) using response surface methodology (RSM). For the production, the optimal parameters were carbon/nitrogen (C:N) ratio, 9:1; temperature, 25 °C; pH, 5.7; incubation time, 240 h; and rpm, 30. A zone of inhibition of 19.33 mm was observed as maximal bioactivity against Pseudomonas aeruginosa. The antibacterial compound was purified by extraction with ethyl acetate, activity-guided fractionation, and preparative high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) studies showed that the Aspergillus niger E12 bioactive substance is 4a-methyl-dodecahydro-1H-pyrrolo [3,4-b] quinoline-6-one.


Assuntos
Antibacterianos , Quinolinas , Antibacterianos/química , Aspergillus niger , Fungos , Pseudomonas aeruginosa , Folhas de Planta/microbiologia , Escherichia coli , Nitrogênio , Carbono , Sacarose , Testes de Sensibilidade Microbiana
4.
Arch Microbiol ; 204(5): 282, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471713

RESUMO

Magnetotactic bacteria (MTB) use iron from their habitat to create magnetosomes, a unique organelle required for magnetotaxis. Due to a lack of cost-effective assay methods for estimating iron in magnetosomes, research on MTB and iron-rich magnetosomes is limited. A systemized assay was established in this study to quantify iron in MTB using ferric citrate colorimetric estimation. With a statistically significant R2 value of 0.9935, the iron concentration range and wavelength for iron estimation were optimized using linear regression. This colorimetric approach and the inductively coupled plasma optical emission spectrometry (ICP-OES) exhibited an excellent correlation R2 value of 0.961 in the validatory correlative study of the iron concentration in the isolated magnetotactic bacterial strains. In large-scale screening studies, this less-expensive strategy could be advantageous.


Assuntos
Magnetossomos , Colorimetria , Óxido Ferroso-Férrico/análise , Bactérias Gram-Negativas , Ferro , Modelos Lineares , Magnetossomos/química
5.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35160578

RESUMO

Waste recycling is one of the key aspects in current day studies to boost the country's circular economy. Recycling wood from construction and demolished structures and combining it with plastics forms wood-polymer composites (WPC) which have a very wide scope of usage. Such recycled composites have very low environmental impact in terms of abiotic potential, global warming potential, and greenhouse potential. Processing of WPCs can be easily done with predetermined strength values that correspond to its end application. Yet, the usage of conventional polymer composite manufacturing techniques such as injection molding and extrusion has very limited scope. Many rheological characterization techniques are being followed to evaluate the influence of formulation and process parameters over the quality of final WPCs. It will be very much interesting to carry out a review on the material formulation of WPCs and additives used. Manufacturing of wood composites can also be made by using bio-based adhesives such as lignin, tannin, and so on. Nuances in complete replacement of synthetic adhesives as bio-based adhesives are also discussed by various researchers which can be done only by complete understanding of formulating factors of bio-based adhesives. Wood composites play a significant role in many non-structural and structural applications such as construction, floorings, windows, and door panels. The current review focuses on the processing of WPCs along with additives such as wood flour and various properties of WPCs such as mechanical, structural, and morphological properties. Applications of wood-based composites in various sectors such as automotive, marine, defense, and structural applications are also highlighted in this review.

6.
J Appl Microbiol ; 132(4): 2683-2693, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34859544

RESUMO

AIMS: This study envisaged the isolation and characterization of magnetite nanoparticles (MNPs) from magnetotactic bacteria (MTB) and the evaluation of their antibacterial efficacy. METHODS AND RESULTS: MNPs were extracted from 20 motile but morphologically different MTB, and they were subjected to antibacterial activity assay. These MNPs were found to be highly effective against Vibrio cholerae. MTB17 was considered as the potent MTB strain based on the antibacterial activity. The MNPs of MTB17 were isolated and validated by UV-Visible spectroscopy, particle size analysis, FTIR analysis, and PXRD. CONCLUSIONS: Isolation and characterization of ~85 nm MNPs from MTB is reported, and it is highly active against all the gram-positive and gram-negative strains tested. SIGNIFICANCE AND IMPACT OF THE STUDY: This study focuses on a novel use of biogenic magnetite MNPs as an antibacterial agent, which can be further explored using in vivo studies.


Assuntos
Bacillus , Nanopartículas de Magnetita , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Nanopartículas de Magnetita/química , Tamanho da Partícula
7.
Biosensors (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671875

RESUMO

Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Nanoestruturas , Nanotubos de Carbono , Nanofios , Nanotecnologia/métodos , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...